FFA@CEBAF Working Group|Minutes
Meeting date | time 8/19/2022 | 11 AM EST | Meeting location 
		Meeting called by
	Alex B

	Type of meeting
	Weekly Meeting

	Facilitator	Alex C

	Note taker	Ryan 

	Timekeeper	Alex B



	Attendees
Alex B, Ryan, Kitty, Jay, Scott, Stephen, Alex C, Dejan, Randy, Andrei, Reza, Vasiliy, 


Intro Discussion
Alex Coxe will provide notes while Ryan is speaking. Thanks!
Alex B and Scott are working out requirements document for splitter design. Dejan’s group have concluded that all beams in one place, then start going ahead. Stephen has TOF corrections fall into place pretty well with arcs – very close for TOF correction.
Alex B will put requirements into the documents folder.
Agenda topics
Time allotted | 25 mins | Agenda topic SW Spreader Redesign | Presenter Ryan
· Spreader currently 46m
· SW same idea as NE spreader
· FFA lines together, drop back down after the bcom/septum magnets
· Total range of septum 26cm
· [image: ]
· Fixed lack of space between bcom/septum to get spacing +height correct
· Required really strong quads to close disp.
· Jay we’ll need new stands, so we should have extra vert. room 
· Dejan confirms architecture
· Current EM magnets can all handle the load increase
· Alex B confirms that spreader/splitter magnets are EM, checks that septa can handle all 6 FFA beamlines
· [image: ]
· Alex B asks about optics that go with the strong quads
· They are difficult
· Raised arcs fix the problem
· Should fit, but TBD
· Scott asks about Twiss functions in spreaders.
· Shown via OptiM plots
· [image: ]
· [image: ]
· [image: ]
· 
· Could put a quad after long drift to affect dispersion 
· Probably interferes with septum (Jay)
· Ryan was worried about this and will move it
· Magnetic shield extends 500 cm, space is pretty tight
· Have to go 550cm from the exit of the first septum to fit anything
· Things are a lot easier with the additional headroom
· Cooling apparatus & superconductor will require about 90cm+150cm+90cm
· Jay supports moving up the last EM arc
· FFA spreader/splitter really is mirror image magnets
· A rounding error or something is a problem (per Alex B)
· [image: ]
· Ryan agrees, can’t find where, but thinks it’s from copy/paste from spreadsheet
· Scott says the dispersion won’t be a problem if the magnets are mirror symmetric
· They are, except possibly the edge fields and/or rounding.
· Need to correct betas going into the splitter
· They grow too much: not wildly, but enough to justify correction
· Need to fine tune and iterate
· Dejan’s design:
· [image: ]
· [image: ]
· Scott: Creating phase advance hard b/c large beta functions
· Quads strong at end b/c of this.
· More useful for splitter
· Septa are horrible – will need SR in simulations, and to take into account multipole terms.
	Action items
	Person responsible	Deadline
	
	
	

	
	
	


Time allotted | 25 mins | Agenda topic Septum Magnets | Presenter Jay
· [image: ]
· BCOMs bigger, septum moved downstream
· All beampipes carbon steel to shield stray fields
· 4th pass goes over second septum.
· Currently an inverted quad
· In the model:
· [image: ]
· Need to shift it a little further
· Fields:
· [image: ]
· Flip this in your head – looks like horizontal bend, but ours will be vertical.
· [image: ]
· Beam coming from right, exits left.
· [image: ]
· Beam enters on the right
· 28 mm clearance
· Assume 15 mm needed for cryostat
· ~1 cm clearance between centroid and cryostat
· [image: ]
· Exit
· [image: ]
· Entrance into second magnet
· ~40 mm
· [image: ]
· Plenty of clearance on 2nd dipole
· [image: ]
· Southwest Spreader
· 3.5 more field
· Would like to get rid of highest E beam.
· More clearance within magnet than to recirculating beam
· Can shift things for clearances
· [image: ]
· Exit
· 1.4 kG over most of distance – needs to shield beams
· Harmonics:
· [image: ]
· Lots of harmonic content
· For SW spreader, quad term is closer to conductor and over 1%
· [image: ]
· Presented at last high-E workshops
· Should stop at A/B/C at 20 GeV
· No plans at Hall D with more than 200 nm – only ~7 sigma with perfect steering, can probably get 5.5 passes in NL as we do now
· Assertion: stop there. Don’t include last 3 half-passes.
· Physically, because of hall line dispersion, that’s as high as we can get.
· 5.5 passes in W arc so have half pass to Hall D (21 GeV)
· Alex: if that’s the experiments want
· Jay: they can live with it
· 8 sigma – going to lose 10^-4 beam with perfect steering and no halo.
· Dejan: what cryostat?
· [image: ]
· Our current setup is at the limits of what we can cool – can’t get 212 A/cm^2 with water
· [image: ]
· Diameter is 3 cm
· If we can use SC magnets instead, can this be smaller?
· Cosine-theta SC magnet
· Started looking at Mg-diboride
· Niobium-Ti
· Nb Tin wind and react might be best way to go given that one needs to keep it isolated from room temp, and we don’t have capacity in linac L-He refrigeration to extend lines 20 m to this location.
· Just don’t have the 2K capacity.
· 100 m + from 4K
· Real estate and existing He refrigeration, need conductive cooling.
· No way to put in enough copper.
· Existing ZA – coil ~1” wide. 
· Need conductively cooled SC – either 4K coolers, or same cryocoolers with 4-5 W of lift at 10-20 K.
· Field at conductor is only 1.1 T – not the issue
· Issue is that it’s conductively cooled and no room between beams
· Need to worry about halo heating
· No He gas to use as beam screen like at LHC
· No decent thermal analysis yet
· Built one years ago
· Know roughly how much space
· 
	Action items
	Person responsible	Deadline
	
	
	

	
	
	


Time allotted | 10 mins | Agenda topic AOB | Presenter All
· Nothing extra this week.
	
	Person responsible	Deadline
	
	
	

	
	
	




Special notes 

Pathway to Repository: https://jeffersonlab-my.sharepoint.com/:f:/g/personal/tristan_jlab_org/EqZ5MeS-nipCgPfZB5p0oS4B9Is67d3nQb9sLJI3Zyev9g
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Figure 1. Part of the SW spreader song sheet. The SW spreader is shown even though the first set of
orbits to be shown are in the NE spreader. The present NE spreader has provision for extracting Hall D
beam which will move downstream to the horizontal splitters of the FFA, so this is more representative
of the expected configuration. The two three-meter ZA magnets at the lower left are to be replaced
with superconducting counterparts with wider poles. Most of the other magnets are to be replaced or
rearranged. Detailed layout is a very iterative process involving Optics and ME; close to a hundred
iterations were required for the 12 GeV upgrade to remove all interferences while retaining an
acceptable optics. This will not be done until there is a real project.
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Figure 4. Bottom view, surface fields displayed, not perspective
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Figuré 6 Five beams entering the ﬁpstream magnet. Launch point 89 cm upstream of this magnet.
Zoomed in to show proximity of highest energy beam to 5 mm wide coil, ~28 mm.
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Figure 11. Field on the surface of the first magnet with all seven orbits shown. If one looks carefully
one sees color gradients at the entrance to the pole. The field at the edge of the steel is above 20 kG so
the edge is not shown in the image.
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Fourier harmonics along orbits in each spreader. Gauss at r=1 cm, integrated along full orbit
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Harmonics for the lowest energies include only the orbit through Z=99 cm because the 1 cm radius
circles intercepted the steel tube thereafter. Given Fig. 10, the contribution is small. Proximity to the
coils at entry and exit clearly matter. Canting the magnets so the beam are farther from the coils at
entrance and exit, as in Figure 1, would help. If the septum coil and the steel are radiused as in the ZAs
much of the resulting improvement would be lost. Perhaps less loss with chamfer.
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Slide adapted from Alex Bogacz talk
| (Jay Benesch) assert that energy
beyond 20 GeV (FFA18) will be subject
to excessive beam loss in Halls A and
C arcs. Hall D might allow 21 GeV
(FFA19) but 19 GeV (FFA17) is more
likely for extraction reasons.

# Synchrotron radiation mitigation in FFAs
® High fill factor (88% space filled with

bends) increases significantly the bend
radius, p.

@ By virtue of extremally small dispersion
and betas, the horizontal emittance

dispersion, <H>, is highly suppressed

18 (factor of 50 lower then in a conventional

CEBAF arc lattice).
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There are 61650 AT in the two bedsteads. It is expected that the coil will be fabricated as a single
bedstead but modeling that would require eliminating a symmetry which reduces the solution time and
was not done. Coil block is 5 mm wide by 60 mm high in the model. My thought was to have a thin
aluminum channel extruded and bent to the required shape, 1 mm section with 5.5 mm side lips. Six
layers of 1 mm conductor, 60 turns per layer, hexagonal close pack, would be wound into the channel,
360 turns total. Perhaps another aluminum plate to close the box, 0.5 or 1 mm, for better conductive
cooling. Current is then 171.25 A. Field at conductor 1.05 T. MgB2 is suggested based on Akira
Yamamoto and Amalia Ballarino, Advances in MgB2 Superconductor Applications for Particle
Accelerators, https://arxiv.org/abs/2201.09501 MgB2 can sustain this load at 20 K so the task of the
cryostat and cryocoolers is less. NbTi is also possible but dealing with the heat load including the leads
will be more difficult. Nb3Sn wind and react is also an option with copper channel (closer to Nb3Sn
thermal expansion during reaction cycle than aluminum). It may be desirable to use a coil of eight
layers, 480 turns, 128.44 A; I haven't looked at beam clearances for 7 mm or 9 mm coil pack width.
The concept allows at least 15 mm clearance on all sides of the 5 mm coil for the cryostat. This model
has 90 mm pole gap, 10 mm more than the gap used in TN-22-033. J increased from 180 to 205.5
A/mm? 14.2% versus 12.5% on geometry. I am reluctant to increase the gap further to accommodate a
larger cryostat section at this stage in the design. Turns per layer can be decreased to get more space if
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