FFA@CEBAF Working Group|Minutes
Meeting date | time 01/13/2023 | 11 AM EST | Meeting location
		Meeting called by
	Alex B

	Type of meeting
	Weekly Meeting

	Facilitator	Alex B

	Note taker	Ryan, Alex C

	Timekeeper	Alex B

	Attendees
Alex B, Ryan, Alex C, Vasiliy, Donish, Jay, Dejan, Stephen, Kirsten, Kitty, Scott, Todd, Randika

Intro Discussion
FOA vs. LRP –
· LRP scheduled to come out in August, so could try next year probably for FOA.
· Last vote was ~ 40% for, 43% against the upgrade
· Need to get word out to non-JLab user community
· Alex will present at APS meeting this April
· Lots of politics involved – many against projects that may “compete” with EIC
· Need to present in a way that R&D is required before proposal
· Future of the field
· Need to stress that it doesn’t negatively impact EIC
· Problem is that they are essentially parallel in time – concerns that NP won’t be able to fund 3 labs simultaneously once EIC starts operating
· Need to make very strong case for continued fixed-target work with at least e+/e- at 11 GeV, but also at higher energies
· Need user community to really push this toward the larger NP community and to congress
Agenda topics
Time allotted | 25 mins | Agenda topic Non-adiabatic Arc | Presenter Vasiliy/Randika
· There were two interesting approaches – are they converging?
· Revising parameters and making them practical
· Magnet lengths, field strengths, etc…
· Will continue working and report more later
· Dejan: it takes up to 2-3 weeks of running on a laptop to get perfect matching
· Not sure how much time it takes, but it takes a lot of effort
· Was very close, but didn’t have alphas = 0, but going in right direction
· Small enough is probably OK – can likely be absorbed
· Dejan: no, they have to be 0 – then it’s easy to proceed
· Vasiliy – concerned with getting fields under control.
· Do this slowly by changing magnet lengths but not mess up matching
· Must be careful with weighting and constraints
· Need higher weight for Dx and Dx’ (and for y)
	Action Items
	Person responsible	Deadline
	
	
	

	
	
	

Time allotted | 25 mins | Agenda topic File Structure | Presenter Ryan
· Date stamp is useful, version stamp less simple
· Stephen mentions that the SharePoint has many other non-code items (presentations, images, etc…)
· This isn’t what we’re organizing with the GitHub, but should be well-organized.
· Alex B thinks GitHub should be the primary tool, but if we can mirror to SharePoint, that will be ideal
· Should be doable from a local computer (even drag and drop)
· Should we remove old versions from Sharepoint?
· Likely no, but use date stamps to indicate the right version
· Scott: Forks will likely be a great organizational tool
· This can help with the date stamp organizational aspects as well – file names can remain the same, and the release folder will indicate when changes were made
· Owners of sections and codes must be assigned – they’ll have “final say” over if a new release is ready
· Likely will be the person doing that section in that code
· Consensus: we need a “baseline” repository
· Jay: should we upload the TOSCA files?
· Yes – at least the files needed to run. Perhaps the output files will need to be elsewhere
· The GB size files may be a problem on GitHub
· https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-large-files-on-github
· Seems that there’s a way to point to large files, but GitHub doesn’t store them
· The general organizational structure works, but the workflow will help more:
· fork > branch > commit > pull request > release
· Release will have a date stamp
· Release notes can indicate what is changed in that release
· Documentation is important – can it be managed through GitHub?
· Syncing from different codes will prove to be difficult
· If one code is iterated, then the same relevant code needs to be in sync with it
· If out of sync, that needs to be documented as well
· Managing the iterative design may be complicated as well
· Who is matching to who?
· Example: Does the spreader need to match into the arcs, or do the arcs need to match into the spreader? How does this iterate?
· In the end, a “lattice overlord” is needed to oversee that all the pieces fit together.
· Copying screenshots of first draft below, but significant changes will be required, given today’s discussion.
· [image:]
· [image:]
· [image:]
· [image:]
	Action items
	Person responsible	Deadline
	Update the document and share for all
	Ryan
	

	
	
	

Time allotted | 10 mins | Agenda topic AOB | Presenter All
·
	Action Items
	Person responsible	Deadline
	
	
	

	
	
	

Special notes

Pathway to Repository: https://jeffersonlab-my.sharepoint.com/:f:/g/personal/tristan_jlab_org/EqZ5MeS-nipCgPfZB5p0oS4B9Is67d3nQb9sLJI3Zyev9g

Page 2
image1.png
File Structure and Naming

FFA@CEBAF Study

2023/01/10

Document Description

This document will describe the locations, file structure, and naming conventions to be used for the
FFA@CEBAF study. These conventions are intended to aid in organization, version control, usability, and
transparency for codes used in the study.

Codes

1. Bmad—Main design and simulation code. Used for the start-to-end simulations.

2. Elegant — Secondary code used for some simulations/error studies, and for consistency checks.
This is the primary code used at CEBAF for the current machine.

MADX/8 — Secondary code used for some design and simulations. Used for translations as well.
OptiM — Secondary code used for design of some sections.

Python — Mainly used for error studies, analysis, and plotting.

Mathematica — Mainly used for analysis of data.

BASH — Used in a general manner for scripting, data parsing, etc...

Various scripts/other codes

O NV AW

Repositories

There will be two main repositories, which must be maintained by the owners of the respective
sections/codes. The purpose of maintaining two repositories is for ease of access for people of different
preferences, as well as permissions. The main coding repository will be on GitHub, which can be
branched for development on independent sections. The SharePoint site will be used for ease of
accessibility for those unfamiliar with GitHub, and should maintain the same general file structure as the
GitHub.

The link to the GitHub repository is: https://github.com/RyanBodenstein/FFA_at CEBAF

The link to the SharePoint repository is:

Documentation

All codes must coincide with documentation which describes the code(s), as well as explains any usages
or necessary knowledge required to use the code. Examples would include, but are not limited to, a
README file describing how to run a specific set of files, which input parameters are being used (if not
listed in the file itself), or other considerations which are important for reproducing the results (such as
central/design energy for a lattice).

In documenting the codes, it is best practice to assume that the user is unfamiliar with the details.
Please assume that the user is brand new, and document in such a manner that they can easily pick up
the code and start using it. This will help for not only reproducibility, but also in the case of new
collaborators joining the study and/or personnel turnover.

image2.png
If, when reviewing documentation, a collaborator finds some information lacking, or a point of
clarification that can be made, the collaborator may do so, and indicate what was changed in a
changelog. See below for more information on changelogs.

File Structure

All codes should be organized in a top-down manner, starting with the machine (CBETA, CEBAF,
CEBAF_12GeV, gtg...), then which code is being used, then divided into smaller sections as needed.
Please see the following examples for folder structures.

Example 1: CEBAF > elegant > NL > 3L > 3126
Example 2: CEBAF > Bpad > 1A > 1A14
Example 3: CEBAF > OptiM > 35

Each folder corresponds to a section name in the machine. In Example 1, NL is the North Linac, 3L s the
3" pass, and 3126 is the 26™ girder on the 3" pass. It may be unnecessary to subdivide so deeply, but
this example is showing what it would look like if necessary.

Furthermore, at times, there will be Testing or Working folders. This is fine, but please be sure they are
labeled appropriately so that they are not mistaken for codes to be used as the “current version.”

For example: CEBAF > Byad > Testing > Arc8_errors

For instances where several studies are being performed, one may also make subfolders indicating the
date, in a manner such as described below for the file naming convention.

For example: CEBAF > Bmad > East_FFA > 2023-01-30_Error

Another important note: if there are more than one gualitative version of any lattice, these should also
be separated by subfolder, and include a date stamp.

For example: CEBAF > OptiM > West_ Spreader > 2022-07-20_4Sa
vs: CEBAF > OptiM > West, Spreader, > 2022-07-20_asb

This example indicates two different lattice versions in the West Spreader. In this case, both were
created the same day, but there is a version “a” and a version “b” indicated by the file name. If one were
to iterate on one version, then the date stamp on the folder name should indicate the new date.

image3.png
Sub-
subsection

Machine Code Section Subsection Ete

File Naming

All codes should be named so that they can be easily located and understood. Rather than using a
version number system, a date stamp system will be used. All files should start with a date stamp,
followed by a description and any other items to differentiate the file and make it easily understood.

The general format should be: YYYY-MM-DD_Description._Clarification,extension.
Example 1: 2022-12-25_LINAC6_OldInputBetas.bmad

Example 2: 2023-01-10_Spreader8_Matched2Splitter.omad

image4.png
Enforcement Policy

While there is some level of flexibility in this system, any gross negligence in aligning with the
organizational policies agreed upon in this document will require the offending documents/folders to be
removed, and the author requested to re-upload them in the proper format.

Changelogs
A changelog file should accompany the documentation for the files. These should indicate significant
changes, such as debugs or lattice changes, etg...

A changelog should contain a description of the changes, a date, and a signature. See this document’s
changelog below, for example.

On the GitHub, be sure to include descriptions when you push changes.

Document Changelog

Date Editor

2
&

Initial version 2023/01/10 RMB

