CBETA Advisory Committee - Cornell, Feb. 25-26, 2020

SIMULATION METHODS TOWARDS 100% TRANSMISSION

F. Méot BNL C-AD

FINDING #1: MODELING OF S AND R LINE DIPOLES IS NOT AS SIMPLE AS THIS:

$$= \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{\rho} \tan \delta & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \phi & \rho \sin \phi & \rho(1 - \cos \phi) \\ -\frac{1}{\rho} \sin \phi & \cos \phi & \sin \phi \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{\rho} \tan \delta & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Splitter line magnets have large gap/width, gap/length, chamfers, shims ("to equalize $\int B ds$ along arcs".)

Ex.1: MR1DIP02_3350 (i) From matrix model above: 1 0.21700 0 0 -3.44E-2 0 0 -0.316661 0 0 0.9503 0.220605 0 0 -0.43960.950276 0 -0.31666 -0.0343 0 0 3.61E-3

Focal distances $\begin{cases} f_x = \infty \\ f_v = -2.3 m \end{cases}$

(ii) from OPERA field map:

		(C	0.0
-0.3141	-0.0341572	0	0	3.6048E-3
0	0	-0.2736	0.9696	0
0	0	0.9696	0.2188	0
-0.1520	0.983583	0	0	-0.31409
0.9834	0.215709	0	0	-3.415E-2

Focal distances $\begin{cases} 1 \\ 1 \\ 1 \end{cases}$

$${f f_x} = -6.6\,{f m} \ {f f_y} = -3.65\,{f m}$$

Ex.2: MR1DIP04_3350

(i) From matrix model:

1.00000	0.215917	0.00000	0.00000	0.00000	-4.059583E-02
0.00000	1.00000	0.00000	0.00000	0.00000	-0.376032
0.00000	0.00000	0.930116	0.220970	0.00000	-0.00000
0.00000	0.00000	-0.610421	0.930116	0.00000	0.00000
-0.376032	-4.059583E-02	0.00000	0.00000	1.00000	5.053004E-03

0.00000

Focal distances $\begin{cases} f_x \\ f_y \end{cases}$

0.975362

0.00000

0.00000

-0.406993

-0.226111

$$f_x = \infty$$

 $f_y = -1.6 m$

0.00000

0.00000

0.945560

-0.480863

0.00000

0.00000 0.00000 -0.4069920.220350 0.00000 0.00000 0.945516 0.00000 0.00000 0.00000 1.00000 6.030060E-03

0.00000

-4.436723E-02

(ii) from OPERA field map:

0.215335

0.975323

0.00000

0.00000

-4.436527E-02

Focal distances	$\left\{ \begin{array}{l} f_x = -4.4m \\ f_y = -2.1m \end{array} \right.$
-----------------	---

FINDING #2: RECOVERING MATRIX OPTICS, USING FIELD MAPS, IS DIFFICULT

Figure 1: Hard-edge. Optical functions from field-maps and BMAD.

• Beam matrix at RETURN1.TIME_PATCH (from R1_OPTICS_TOSCA.INC_allMult.res or as well R1_OPTICS_MULT.res):

Reference, before change of frame (part # 1) : x x'' s t -6.738569E-06 -1.692496E-05 -0.000000E+00 -0.00000E+00 9.0349361E+03 3.01395E-01

	BEAM MATRIX	(beta/alpha/alp	ha/gamma, D,D'),	FINAL
5.42043	0.612627	0.00000	0.00000	-2.540056E-02
0.612627	0.253727	0.00000	0.00000	-0.212696
0.00000	0.00000	5.15726	0.977542	0
0.00000	0.00000	0.977542	0.379191	0

Figure 2: Field maps. Optical functions from field-maps (compared w/ BMAD). Using all 8 quads: I can't get final betas and Dx tuned concurrently.

• Final beam matrix (R1_OPTICS_TOSCA.INC.res):

Reference, befor	re change of f x'	rame (part	1) :	s	t
3.27543192E-05	7.17094151E	-05 0.000000	-0.000000 9.	03486555E+03	3.01392983E-01
	BEAM MATRIX	(beta/alpha/alp	ha/gamma, D,D')		FINAL
8.35898	-0.825777	0.00000	0.00000	0	.633710
-0.825777	0.198838	0.00000	0.00000		4.091696E-02
0.00000	0.00000	6.07972	0.691029		0
0.00000	0.00000	0.691029	0.243025		0

FINDING #3: THE FFAG LOOP WAS DESIGNED, AND HALBACH TECHNOLOGY VALIDATED IN CBETA APPLICATION, USING OPERA FIELD MAPS [1]. AND THE FFAG LOOP WORKS

• Probably hard to find worse in the matter of field inhomogeneity:

^[1] F. Méot, N. Tsoupas, et al.,

Beam dynamics validation of the Halbach Technology FFAG Cell for Cornell-BNL ERL Nuclear Inst. and Methods in Physics Research, A 896 (2018) 6067

 \bullet Obviously, field maps will give a different optics of S/R lines

COMMENT #2

• We need to commission CBETA with more than a single simulation tool

COMMENT #3

• CBETA commissioning and operation is an opportunity for BNL to confront the beam dynamics tools they develop - for the benefit amongst other of the EIC

COMMENT #4

• We do have a double-engine, on-line, at the AGS [1]

The tracking engine interface

"AGSModelViewer"

has been designed with "multiple-engine" capability.

This is easy, if difficulties, C-AD can help installing such capability at CBETA

[1] V. Schoefer et als., RHIC injector complex online model, FR5REP003, http://accelconf.web.cern.ch/AccelConf/PAC2009/papers/fr5rep003.pdf [2] F. Méot et als., http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/wepea082.pdf

SELF-RECOMMENDATION #1: USE MODERN BEAM DYNAMICS TOOLS

- Plan to give up archaic, 1950s style matrix products (for a while)
- and instead, use modern tools:
 - accurate, field map models, from magnet codes,
 - today's computer power,
- to solve $\vec{F} = m\vec{a}$ numerically, which means accurately

SELF-RECOMMENDATION #2:PUT BEAM DYNAMICS SOFTWARE TOOLS TO WORK

• During the shut down, plan further commissioning of CBETA based on an on-line model using field maps