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Abstract

In preparation for a new generation of complete experiments with the goal of performing a high

precision extraction of pseudoscalar meson photo-production amplitudes, we present expressions

that allow the direct numerical calculation of matrix elements with arbitrary spin projections from

Chew-Goldberger-Low-Nambu (CGLN) amplitudes. We use this numerical tool to verify the most

general analytic form of the cross section, dependent upon the three polarization vectors of the

beam, target and recoil baryon, including all single, double and triple-polarization terms involving

16 spin-dependent observables. Analytic expressions that determine the recoil baryon polarization

are presented, together with examples of their potential use with quasi-4π detectors to deduce

observables. We assemble the analytic equations relating the 16 experimental observables and

the CGLN amplitudes and use our independent method of numerical evaluation to resolve sign

differences that exist in the literature. Comparing to the MAID and SAID Partial Wave Analysis

(PWA) codes, we have found that the implied definitions of six double-polarization observables are

the negative of what has been used in comparing to recent experimental data, while the calculations

of the BoGa PWA code are consistent with the present work. We have numerically checked the

signs in the 37 Fierz identities that interrelate the 16 spin observables and have corrected many

inconsistencies found in the literature. As an illustration of the use of this machinery, we carry

out a multipole analysis of the γp → K+Λ reaction and examine the impact of recently published

polarization measurements. When combining data from different experiments, we utilize the Fierz

identities to fit a consistent set of scales. In fitting multipoles, we use a combined Monte Carlo

sampling of the amplitude space, with gradient minimization, and find a shallow χ2 valley pitted

with a very large number of local minima. This results in broad bands of multipole solutions that

are experimentally indistinguishable. While these bands are noticeably narrowed by the inclusion

of additional polarization measurements, many of the multipoles remain very poorly determined,

even in sign, despite the inclusion of recent data on 8 different observables. We have compared

multipoles from recent PWA codes with our model-independent solution bands, and found that

such comparisons provide useful consistency tests which clarify model interpretations, for example

regarding the nature of the recently reported N∗(∼ 1900). We conclude that, while a mathematical

solution to the problem of determining an amplitude free of ambiguities may require 8 observables,

as has been pointed out in the literature, experiments with realistically achievable uncertainties

will require a significantly larger number.
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I. INTRODUCTION

As a consequence of dynamic chiral symmetry breaking, the Goldstone bosons (π, η,K)

dress the nucleon and alter its spectrum. Not surprisingly, pseudoscalar meson production

has been a powerful tool in studying the spectrum of excited nucleon states. However,

such states are short lived and broad so that above the energy of the first resonance, the

P33 ∆(1232), the excitation spectrum is a complicated overlap of many resonances. Isolat-

ing any one and separating it from backgrounds has been a long-standing problem in the

literature.

The spin degrees of freedom in meson photoproduction provide signatures of interfering

partial wave strength that are often dramatic and have been useful for differentiating between

models of meson production amplitudes. Models that must account for interfering resonance

amplitudes and non-resonant contributions are often severely challenged by new polarization

data. Ideally, one would like to partition the problem by first determining the amplitudes

from experiment, at least to within a phase, and then relying upon a model to separate

resonances from non-resonant processes. Single-pseudoscalar photoproduction is described

by 4 complex amplitudes (two for the spin states of the photon, two for the nucleon target

and two for the baryon recoil, which parity considerations reduces to a total of 4). To avoid

ambiguities, it was shown [1] that angular distribution measurements of at least 8 carefully

chosen observables at each energy for both proton and neutron targets must be performed.

While such experimental information has not yet been available, even after 50 years of

photoproduction experiments, a sequence of complete experiments are now underway at

Jefferson Lab [2, 3], as well as complementary experiments from the GRAAL backscattering

source in Grenoble [4, 5] and the electron facilities in Bonn and Mainz, with the goal of

obtaining a direct determination of the amplitude to within a phase, for at least a few

production channels, notably KΛ and possibly πN .

Our purpose here is two fold. First we assemble the relations between experimental

observables and the Chew-Goldberger-Low-Nambu (CGLN) amplitudes and electromagnetic

multipoles [6], and resolve sign differences that exist in the literature. Then, as an illustration

of the use of these relations along the path to determining an amplitude from the new

generation of experiments, we use recently published results on 8 different observables to

carry out a multipole analysis of the γp → K+Λ reaction, free of model assumptions, and
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evaluate the uniqueness of the resulting solutions.

The four CGLN amplitudes can be expressed in Cartesian (Fi), Spherical or Helicity (Hi),

or Transversity (bi) representations. While the latter two choices afford some theoretical

simplifications when predicting asymmetries from model amplitudes [7], when working in the

reverse direction, fitting asymmetries to extract amplitudes, such simplifications are largely

moot. In practice, one expands the amplitudes in multipoles and fits the multipoles directly.

This both facilitates the search for resonance behavior and allows the use of full angular

distribution data at a fixed energy to constrain angle-independent quantities. (Extracting

the four CGLN amplitudes directly would require separate fits at each angle, along with some

way of constraining an arbitrary phase which could be angle dependent.) Here we restrict

our considerations to the CGLN Fi representation, which has the simplest decomposition

into multipoles [6], Eqs. (15)-(18) below.

In single-pseudoscalar meson photoproduction there are 16 possible observables, the un-

polarized differential cross section (dσ0), three asymmetries which to leading order enter

the general cross section scaled by a single polarization of either beam, target or recoil (Σ,

T , P ), and three sets of four asymmetries whose leading dependence in the general cross

section involves two polarizations of either beam-target (BT), beam-recoil (BR), or target-

recoil (TR), as in Ref. [7]. Expressions for at least some of these observables in terms of the

CGLN Fi appear already in earlier papers [8, 9]. The available complete expressions can be

classified into two groups of Refs. [10, 11] and Refs. [12, 13]. In all cases we have found in

the literature, the magnitudes of the expressions relating the CGLN Fi to experimental ob-

servables are identical, but the signs of some appear to differ. In particular, sign differences

have occurred in double-polarization observables for which little data have been available

until very recently. There is also a set of 37 Fierz identities interrelating the 16 polarization

observables, the most complete list being given in Ref. [1]. We have found many of the signs

in the expressions of this list to be incompatible with either group of papers, Ref. [10, 11]

or [12, 13].

There are several coordinate systems in use in the literature and in Sec. II we define ours,

which is the same as used in the seminal paper by Barker, Donnachie and Storrow (BDS) [7].

In Sec. III we present explicit and complete formulae that allow the direct calculation of

matrix elements with arbitrary spin projections from CGLN amplitudes or multipoles. In

Sec. IV we present the most general analytic form of the cross section, dependent on the three
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FIG. 1: Kinematic variables in meson photoproduction in Lab and CM frames.

polarization vectors of the beam, the target and the recoil baryon. The derivation of this

cross section expression is summarized in Appendix A, and the experimental definitions of

the observables in terms of cross sections with explicit polarization orientations is tabulated

in Appendix B. Using these definitions, numerical evaluations of the expressions in Sec. III

are used to verify the consistency of the signs in the analytic general cross section equation of

Sec. IV. While the beam and target polarizations are under experimental control, the recoil

polarization is on a very different footing, being a byproduct of the angular momentum of

the entrance channel and the reaction physics. Expressions that determine the recoil baryon

polarization are developed in Sec. V. To evaluate the analytic relations between observables

and amplitudes we next use numerical calculations of the expressions in Sec. III to fix signs

and present the complete set of equations in Sec. VI that determine the 16 observables

from the CGLN amplitudes. The 37 Fierz identities that interrelate the observables are

discussed in Sec. VII and presented with corrected signs in Appendix C. In Sec. VIII we

utilize the machinery we have assembled to carry out a multipole analysis of the γp→ K+Λ

reaction. (Born terms for this process are summarized in Appendix D.) In so doing we

test the nature of the χ2 valley, discuss the role of the arbitrary phase and examine the

impact of recently published polarization data and the uniqueness of the multipole solution.

Section IX concludes with a brief summary.

II. KINEMATICS AND COORDINATE DEFINITIONS

The kinematic variables of meson photoproduction used in our derivations are specified

in Fig. 1. Some useful relations are :

• The total center of mass (CM) energy:

W =
√
s =

√

mtgt(mtgt + 2ELab
γ ). (1)
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• The laboratory (Lab) energy needed to excite the hadronic system with total CM

energy W :

ELab
γ =

W 2 −m2
tgt

2mtgt

. (2)

• The energy of the photon in the CM frame:

ECM
γ =

W 2 −m2
tgt

2W
= q. (3)

• The magnitude of the 3-momentum of the meson in the CM frame:

∣

∣PCM
π,η,K

∣

∣ =
W

2

{[

1−
(

mπ,η,K +mR

W

)2
][

1−
(

mπ,η,K −mR

W

)2
]}1/2

= k. (4)

• The density of state factor:

ρ0 =
∣

∣PCM
π,η,K

∣

∣ /ECM
γ = k/q. (5)

The definitions of polarization angles used in our derivation are shown in Fig. 2, using the

case of K Λ production as an example. The 〈x̂− ẑ〉 plane is the reaction plane in the center

of mass. The figure illustrates the case of linear γ polarization, with the alignment direction

P γ
L (parallel to the oscillating electric field of the photon) in the 〈x̂− ŷ〉 plane at an angle φγ,

rotating from x̂ towards ŷ. The target nucleon polarization ~P T is specified by polar angle

θp measured from ẑ, and azimuthal angle φp in the 〈x̂ − ŷ〉 plane, rotating from x̂ towards

ŷ. The recoil Λ baryon is in the 〈x̂− ẑ〉 plane; its polarization ~PR
Λ is at polar θp′, measured

from ẑ, and azimuthal φp′ in the 〈x̂ − ŷ〉 plane, rotating from x̂ to ŷ. Following BDS [7],

observables involving recoil polarization are specified in the rotated coordinate system with

ẑ′ = +k̂, along the meson CM momentum and opposite the recoil momentum, ŷ′ = ŷ, and

x̂′ = ŷ′ × ẑ′ in the scattering plane at a polar angle of θK + (π/2) relative to ẑ.

The case of circular photon polarization can potentially lead to some confusion. Most

particle physics literature designates circular states as r, for right circular (or l, for left

circular), referring to the fact that with r polarization the electric vector of the photon

appears to rotate clockwise when the photon is traveling away from the observer. However,

when the same photon is viewed by an observer facing the incoming photon the electric

vector appears to rotate counter-clockwise. For this reason optics literature traditionally

designates this same state as l circularly polarized. Nonetheless, both conventions agree on
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FIG. 2: The CM coordinate system and angles used to specify polarizations in the reaction,

γ(~q, ~P γ) +N(−~q, ~P T ) → K(~k) + Λ(−~k, ~PR
Λ ). The left (right) side is for the initial γN (final KΛ

system.

the value of the photon helicity [14] h = ~S · ~P/|~P | = ±1 and so we use only the helicity

designations here, ~P γ
c = +1(−1) when 100% of the photon spins are parallel (anti-parallel)

to the photon momentum vector.

III. CALCULATION OF POLARIZATION OBSERVABLES

As discussed in Sec. I, all publications give similar formulae for polarization observables,

but conflicting signs occur in some terms with very lengthy expressions. It is very difficult,

if not impossible, to resolve this problem by repeating the same algebraic procedures used in

previous works. To resolve these sign problems, it is necessary to develop completely different

and yet simple formulae which can be used to calculate numerically all spin observables

of pseudoscalar meson photoproduction. This numerical tool will then allow us to check

unambiguously the analytic expressions for spin observables in all previous publications. In

this section, we present the derivation of such formulae using the case ofKΛ photoproduction

as an example.

Let us first consider the case when all beam, target, and recoil polarizations are 100%

polarized in certain directions. With variables specified as in Fig. 2, the differential cross

section for γ(~q, P̂ γ)+N(−~q,msN ) → K(~k)+Λ(−~k,msΛ) in the center of mass frame can be
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written as

dσ

dΩ
(P̂ γ, msN , msΛ) =

1

(4π)2
k

q

mNmΛ

W 2
|ūΛ(−~k,msΛ)I

µǫµuN(−~q,msN )|2, (6)

where W = q + EN(q) = EK(k) + EΛ(k); ǫµ = (0, P̂ γ) with |P̂ γ| = 1 is the photon po-

larization vector; msΛ and msN are the spin substate quantum numbers of the Λ and the

nucleon along the z-direction, respectively; ūΛI
µǫµuN is normalized to the usual invariant

amplitude calculated from a Lagrangian in the convention of Bjorken and Drell [15]. For ex-

ample, for a simplified Lagrangian density L(x) = −(fKΛN/mK)ψ̄Λ(x)γ5γµψN (x)∂
µφK(x) +

eN ψ̄N (x)γ
µψN (x)Aµ(x), the s-channel γ(q) + N(p) → N(p′ + k) → K+(k) + Λ(p′) con-

tribution to Iµ is ieN (fKΛN/mK) 6 kγ5[( 6 k+ 6 p′) − mN ]
−1γµ. By averaging over all initial

state polarizations and summing over final state polarizations in Eq. (6), we can obtain the

unpolarized cross section:

dσ0 ≡
1

4

∑

msN
=±1/2

∑

msΛ
=±1/2

∑

γ-spins

dσ

dΩ
(P̂ γ, msN , msΛ), (7)

where the symbol
∑

γ-spins implies taking summation over two photon polarization states,

with polarization vectors perpendicular to each other for linearly polarized photons and with

helicity ±1 states for circularly polarized photons.

The CGLN amplitude [6] is defined by

ūΛ(−~k,msΛ)I
µǫµuN(−~q,msN ) = − 4πW√

mNmΛ
〈msΛ|FCGLN|msN 〉, (8)

where |ms〉 is the usual eigenstate of the Pauli operator σz , and

FCGLN =
∑

i=1,4

OiFi(θK , E), (9)

with

O1 = −i~σ · P̂ γ, (10)

O2 = −[~σ · k̂][~σ · (q̂ × P̂ γ)], (11)

O3 = −i[~σ · q̂][k̂ · P̂ γ], (12)

O4 = −i[~σ · k̂][k̂ · P̂ γ]. (13)

Here we have defined k̂ = ~k/|~k| and q̂ = ~q/|~q|. We then obtain

dσ

dΩ
(P̂ γ, msN , msΛ) =

k

q
|〈msΛ |FCGLN|msN 〉|2. (14)
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The formulae for calculating CGLN amplitudes from multipoles are well known [6] and

are given below:

F1 =
∑

l=0

[P ′
l+1(x)El+ + P ′

l−1(x)El− + lP ′
l+1(x)Ml+ + (l + 1)P ′

l−1(x)Ml−] , (15)

F2 =
∑

l=0

[(l + 1)P ′
l (x)Ml+ + lP ′

l (x)Ml−] , (16)

F3 =
∑

l=0

[P ′′
l+1(x)El+ + P ′′

l−1(x)El− − P ′′
l+1(x)Ml+ + P ′′

l−1(x)Ml−] , (17)

F4 =
∑

l=0

[−P ′′
l (x)El+ − P ′′

l (x)El− + P ′′
l (x)Ml+ − P ′′

l (x)Ml−] . (18)

where x = k̂ · q̂ = cos θK , l is the orbital angular momentum of the KΛ system, and

P ′
l (x) = dPl(x)/dx and P ′′

l (x) = d2Pl(x)/dx
2 are the derivatives of the Legendre function

Pl(x), with the understanding that P ′
−1 = P ′′

−1 = 0. In practice, the sum runs to a limiting

value of lmax which depends on the energy.

In order to calculate the 16 polarization observables in an arbitrary experimental ge-

ometry, we develop a form for the cross section with arbitrary spin projections for initial

and final baryon states, γ(~q, P̂ γ) +N(−~q, P̂ T ) → K(~k) + Λ(−~k, P̂R), as specified in Fig. 2,

where P̂ T (P̂R) is the unit vector specifying the direction of the target (recoil) spin polar-

ization. Here linear photon polarization must be in the 〈x̂ − ŷ〉 plane and circular photon

polarization must be aligned with ẑ, while P̂ T and P̂R can be in any directions. The corre-

sponding cross section is obtained by simply replacing |〈msΛ|FCGLN|msN 〉|2 in Eq. (14) with

|〈P̂R|FCGLN|P̂ T 〉|2:

dσB,T,R(P̂
γ, P̂ T , P̂R) ≡ dσ

dΩ
(P̂ γ, P̂ T , P̂R) =

k

q
|〈P̂R|FCGLN|P̂ T 〉|2, (19)

where |P̂ T 〉 (〈P̂R|) is a state of the initial (final) spin-1/2 baryon with the spin pointing in

the P̂ T (P̂R) direction. We note that if P̂ T (P̂R) is in the direction of the momentum of the

initial (final) baryon, then |P̂ T 〉 (〈P̂R|) is the usual helicity state as defined, for example,

by Jacob and Wick [16]. We need to consider more general spin orientations for all possible

experiments geometries. The spin state |ŝ〉 quantized in the direction of an arbitrary vector

ŝ = (1, θ, φ) is defined by

~S · ŝ|ŝ〉 = +
1

2
|ŝ〉, (20)

where ~S is the spin operator. For the considered spin-1/2 baryons, ~S is expressed with the

Pauli matrix: ~S = ~σ/2.
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We next derive explicit formulae for calculating the matrix element 〈P̂R|FCGLN|P̂ T 〉 in

terms of the CGLN amplitudes Fi in Eqs. (15)-(18). We note that the spin state |ŝ〉 is

related to the usual eigenstate of z-axis quantization by rotations:

|ŝ〉 =
∑

m=±1/2

D
(1/2)
m,+1/2(φ, θ,−φ)|m〉, (21)

where |m〉 is defined as Sz|±1/2〉 = (±1/2)|±1/2〉, and

D
(1/2)
m,λ (φ, θ,−φ) = e−i(m−λ)φd

1/2
m,λ(θ). (22)

We use the phase convention of Brink and Satchler [17] where,

d
1/2
+1/2,+1/2(θ) = d

1/2
−1/2,−1/2(θ) = cos

θ

2
,

d
1/2
−1/2,+1/2(θ) = −d1/2+1/2,−1/2(θ) = sin

θ

2
. (23)

Equation (21) can be easily verified by explicit calculations using the definition (20) and

the properties (22) and (23) for the special cases where ŝ = x̂, ŷ, ẑ, together with the usual

definition of the Pauli matrices, (σi)mm′ [i = x, y, z andm (row),m′ (column) = ±1/2,±1/2],

σx =





0 1

1 0



 , σy =





0 −i
i 0



 , σz =





1 0

0 −1



 . (24)

From Fig. 2, the momenta and linear photon polarization are expressed as

~q = q(0, 0, 1), (25)

~k = k(sin θK , 0, cos θK), (26)

P̂ γ
L = (cos φγ, sinφγ, 0). (27)

Circular photon polarizations of helicity λγ are expressed as

(P̂ γ
c )λγ=±1 = ∓ 1√

2
(x̂± iŷ). (28)

For the initial and final baryon polarizations, we use the spherical variables, as in Fig. 2:

P̂ T = (1, θp, φp), (29)

P̂R = (1, θp′, φp′). (30)

11



TABLE I: Ci,n(θK , φγ) of Eqs. (31) and (33)

n = 0 n = 1 n = 2 n = 3

i = 1 0 −i cosφγ −i sinφγ 0

i = 2 sin θK sinφγ i cos θK cosφγ i cos θK sinφγ −i sin θK cosφγ

i = 3 0 0 0 −i sin θK cosφγ

i = 4 0 −i sin2 θK cosφγ 0 −i sin θK cos θK cosφγ

By using Eqs. (25)-(27), we can rewrite Oi in Eqs. (10)-(13) as

Oi =
∑

n=0,3

Ci,n(θK , φγ)σn, (31)

where σ0 = 1, σ1 = σx, σ2 = σy, σ3 = σz . The explicit form of Ci,n is given in Table I.

By using Eq. (21) and Eqs. (9) and (31), the photoproduction matrix element can then

be calculated as

〈P̂R|FCGLN|P̂ T 〉 =
∑

n=0,3

Gn(θK , φγ)〈P̂R|σn|P̂ T 〉, (32)

with

Gn(θK , φγ) =
∑

i=1,4

Fi(θK , E)Ci,n(θK , φγ), (33)

and

〈P̂R|σn|P̂ T 〉 =
∑

msΛ
,msN

=±1/2

D
(1/2)∗
msΛ

,+1/2(φp′, θp′ ,−φp′)D
(1/2)
msN

,+1/2(φp, θp,−φp)〈msΛ |σn|msN 〉,

(34)

where 〈msΛ|σn|msN 〉 = (σn)msΛ
,msN

are the elements of the Pauli matrices of Eq. (24).

We may now start with any set of multipoles and use Eqs. (15)-(18) to calculate the

CGLN amplitudes, which are then used to calculate the matrix element 〈P̂R|FCGLN|P̂ T 〉
by using Eqs. (32)-(34). Equation (19) then allows us to calculate all possible polarization

observables, for the case of unit polarization vectors with arbitrary orientation.

With non-unit polarization vectors, the general cross section can be expressed in terms

of Eq. (19) as, (see also Appendix A),

dσB,T,R(~P
γ, ~P T , ~PR) =

∑

P̂=P̂ γ
1
,P̂ γ

2

∑

Q̂=±P̂T

∑

R̂=±P̂R

p
γ

P̂
p
T
Q̂
p
R
R̂
dσB,T,R(P̂ , Q̂, R̂). (35)

12



Here the vector ~PX specifies the degree and direction of the polarization of particle X =

γ, T, R. For the target (T) and recoil (R) baryons, this is just ~PX = (pX
+P̂X

− pX
−P̂X

)P̂X,

where pX
±P̂X

(X = T,R) is the probability of observing X with its polarization vector

pointing in the ±P̂X direction. For the photons (γ), however, the non-unit polarization

vector can be expressed as ~P γ = (pγ
P̂ γ
1

− p
γ

P̂ γ
2

)P̂ γ. Here, P̂ γ
1 (≡ P̂ γ) and P̂ γ

2 are orthogonal

polarization directions, 90◦ apart for linear polarization, and opposite helicity states for

circular polarization. Then p
γ

P̂ γ
1

(pγ
P̂ γ
2

) is a probability observing photons with its polarization

vector pointing in the P̂ γ
1 (P̂ γ

2 ) direction. To clarify Eq. (35), consider the case that all beam,

target, and recoil particles are unpolarized as an example. In this case the probabilities of

finding spin projection in each of two possible directions are equal and hence p
T,R

±P̂T,R
=

p
γ

P̂ γ
1 ,P̂ γ

2

= 1/2, which lead to ~P γ,T,R = ~0. Then we have

dσB,T,R(~0,~0,~0) =
1

8

[

dσB,T,R(P̂
γ
1 ,+P̂

T ,+P̂R) + dσB,T,R(P̂
γ
1 ,+P̂

T ,−P̂R)

+dσB,T,R(P̂
γ
1 ,−P̂ T ,+P̂R) + dσB,T,R(P̂

γ
1 ,−P̂ T ,−P̂R)

+dσB,T,R(P̂
γ
2 ,+P̂

T ,+P̂R) + dσB,T,R(P̂
γ
2 ,+P̂

T ,−P̂R)

+dσB,T,R(P̂
γ
2 ,−P̂ T ,+P̂R) + dσB,T,R(P̂

γ
2 ,−P̂ T ,−P̂R)

]

=
1

2
dσ0, (36)

where dσ0 is the unpolarized cross section defined in Eq. (7). The appearance of the factor

(1/2) in the last equation is because the polarization of the final recoil particles is also

averaged in Eq. (36).

IV. GENERAL CROSS SECTION

The derivation of an analytic expression for the general cross section in pseudoscalar

meson photoproduction is summarized in Appendix A, where we follow the formalism of

Fasano, Tabakin and Saghai (FTS) [11], expanding their treatment to include the complete

set of triple polarization cases. In terms of the polarization vectors of Fig. 2, and with sign

verified numerically using Eq. (35) of Sec. III, the most general form of the cross section can

13



be written as,

dσB,T,R(~P
γ, ~P T , ~PR) =

1

2

{

dσ0
[

1− P γ
LP

T
y P

R
y′ cos(2φγ)

]

+ Σ̂
[

−P γ
L cos(2φγ) + P T

y P
R
y′

]

+ T̂
[

P T
y − P γ

LP
R
y′ cos(2φγ)

]

+ P̂
[

PR
y′ − P γ

LP
T
y cos(2φγ)

]

+ Ê
[

−P γ
c P

T
z + P γ

LP
T
x P

R
y′ sin(2φγ)

]

+ Ĝ
[

P γ
LP

T
z sin(2φγ) + P γ

c P
T
x P

R
y′

]

+ F̂
[

P γ
c P

T
x + P γ

LP
T
z P

R
y′ sin(2φγ)

]

+ Ĥ
[

P γ
LP

T
x sin(2φγ)− P γ

c P
T
z P

R
y′

]

+ Ĉx′

[

P γ
c P

R
x′ − P γ

LP
T
y P

R
z′ sin(2φγ)

]

+ Ĉz′
[

P γ
c P

R
z′ + P γ

LP
T
y P

R
x′ sin(2φγ)

]

+ Ôx′

[

P γ
LP

R
x′ sin(2φγ) + P γ

c P
T
y P

R
z′

]

+ Ôz′
[

P γ
LP

R
z′ sin(2φγ)− P γ

c P
T
y P

R
x′

]

+ L̂x′

[

P T
z P

R
x′ + P γ

LP
T
x P

R
z′ cos(2φγ)

]

+ L̂z′
[

P T
z P

R
z′ − P γ

LP
T
x P

R
x′ cos(2φγ)

]

+ T̂x′

[

P T
x P

R
x′ − P γ

LP
T
z P

R
z′ cos(2φγ)

]

+ T̂z′
[

P T
x P

R
z′ + P γ

LP
T
z P

R
x′ cos(2φγ)

]

}

. (37)

In this expression we have designated the product of an asymmetry and dσ0 with a caret,

so that Â = Adσ0. These products are referred to as profile functions in Refs. [1, 11]. One

can of course pull a common factor of dσ0 out in front of the above expression, in which

case all the profile functions are replaced by their corresponding asymmetries. However,

we keep the above form since it is the profile functions that are most simply determined

by the CGLN amplitudes. (The definition of each of these profile functions in terms of

measurable quantities is given by Appendix B.) The second, third and fourth terms (Σ̂, T̂ ,

P̂ ) are commonly referred to as single-polarization observables, since their leading coefficients

contain only a single polarization vector. The subsequent 12 terms are grouped into 3 sets of

4, BT, BR and TR, after the combination of polarization vectors appearing in their leading

coefficients. Two of the leading terms have negative coefficients. The first arises because

we have taken for the numerator of the beam asymmetry (Σ) the somewhat more common
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definition of (σ⊥ − σ‖), rather than the other way around. [Here ⊥ (‖) corresponds to

~P γ
L = ŷ (~P γ

L = x̂) in the left panel of Fig. 2.] For the second, because of its connection to

spin sum rules the numerator of the E asymmetry is often defined in terms of the difference

between cross sections with anti-parallel and parallel photon and target spin alignments,

respectively [18]. The specific measurements needed to construct each of these observables

is tabulated in Appendix B.

Recoil observables are generally specified in the rotated coordinate system with ẑ′ = +k̂.

Occasionally, a particular recoil observable will have a more transparent interpretation in

the unprimed coordinate system of Fig. 2 [19]. Since a baryon polarization transforms as a

standard three vector, the unprimed and primed observables are simply related:

Ax = +Ax′ cos θK + Az′ sin θK , (38)

Az = −Ax′ sin θK + Az′ cos θK , (39)

where A represents any one of the BR or TR observables.

It is convenient to arrange the observables entering the general cross section in tabular

form, as in Table II. The 4 rows correspond to different states of beam polarization, either

without regard to incident polarization (unpolarized) or in one the three standard Stokes

conditions that characterize an ensemble of photons, linear with a sin(2φγ) dependence rel-

ative to the reaction plane, linear with a cos(2φγ) dependence, or circular. The columns of

the table give the polarization of the target, recoil, or target + recoil combination. One can

readily construct from this table the terms that enter the general cross section for any given

combination of polarization conditions. For example, with linear beam polarization in or

perpendicular to the reaction plane, a longitudinally polarized target (along ẑ) and an anal-

ysis of recoil polarization along the meson (kaon) momentum (ẑ′), the general cross section

is given by the terms in the first (unpolarized) and third rows that are either independent

of target and recoil polarization (dσ0,−Σ) or in columns associated with polarization along

ẑ and/or ẑ′, namely (1/2){[dσ0 + P T
z P

R
z′ L̂z′ ] + P γ

L cos(2φγ)[−Σ̂− P T
z P

R
z′ T̂x′ ]}.

V. RECOIL POLARIZATION

The above expression in Eq. (37) displays a level of symmetry in the three polarization

vectors, ~P γ, ~P T and ~PR. However, while the first two are parameters that are under ex-
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TABLE II: Polarization observables in pseudoscalar meson photoproduction. Each observable

appears twice in the table. The 16 entries in black indicate the leading polarization dependence

of each observable to the general cross section. The three underlined entries in red (P̂ , T̂ , Σ̂) are

nominal single-polarization quantities that can be measured with double-polarization. Those in

bold blue are the unpolarized cross section and 12 nominal double-polarization quantities that can

be measured with triple-polarization.

Beam (P γ) Target (P T ) Recoil (PR) Target (P T ) + Recoil (PR)

x′ y′ z′ x′ x′ x′ y′ y′ y′ z′ z′ z′

x y z x y z x y z x y z

unpolarized dσ0 T̂ P̂ T̂x′ L̂x′ Σ̂ T̂z′ L̂z′

P γ
L sin(2φγ) Ĥ Ĝ Ôx′ Ôz′ Ĉz′ Ê F̂ −Ĉx′

P γ
L cos(2φγ) −Σ̂ −P̂ −T̂ −L̂z′ T̂z′ −dσ0 L̂x′ −T̂x′

circular P γ
c F̂ −Ê Ĉx′ Ĉz′ −Ôz′ Ĝ −Ĥ Ôx′

perimental control, the recoil polarization is not. Rather, ~PR is a byproduct of the angular

momentum brought into the entrance channel through ~P γ and ~P T , and the reaction physics.

The relations determining ~PR are readily derived. We start by regrouping terms in the gen-

eral cross section expression to display the explicit dependence on ~PR and recast Eq. (37)

as,

dσB,T,R(~P
γ, ~P T , ~PR) =

1

2

[

A0 + (PR
x′ )Ax′

+ (PR
y′ )A

y′ + (PR
z′ )A

z′
]

, (40)

where

A0 = dσ0 − P γ
L cos(2φγ)Σ̂ + P T

y T̂

−P γ
LP

T
y cos(2φγ)P̂ − P γ

c P
T
z Ê + P γ

LP
T
z sin(2φγ)Ĝ+ P γ

c P
T
x F̂ + P γ

LP
T
x sin(2φγ)Ĥ,

Ax′

= P γ
c Ĉx′ + P γ

L sin(2φγ)Ôx′ + P T
z L̂x′ + P T

x T̂x′

+P γ
LP

T
y sin(2φγ)Ĉz′ − P γ

c P
T
y Ôz′ − P γ

LP
T
x cos(2φγ)L̂z′ + P γ

LP
T
z cos(2φγ)T̂z′,

Ay′ = P̂ + P T
y Σ̂− P γ

L cos(2φγ)T̂

−P γ
LP

T
y cos(2φγ)dσ0 + P γ

LP
T
x sin(2φγ)Ê + P γ

c P
T
x Ĝ+ P γ

LP
T
z sin(2φγ)F̂ − P γ

c P
T
z Ĥ,
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Az′ = P γ
c Ĉz′ + P γ

L sin(2φγ)Ôz′ + P T
z L̂z′ + P T

x T̂z′

−P γ
LP

T
y sin(2φγ)Ĉx′ + P γ

c P
T
y Ôx′ + P γ

LP
T
x cos(2φγ)L̂x′ − P γ

LP
T
z cos(2φγ)T̂x′.

The recoil polarization ~PR can be resolved as the vector sum of three component vectors,

PR
x′ x̂′, PR

y′ ŷ
′, PR

z′ ẑ
′. Considering first PR

x′ x̂′, this is the degree of polarization along x̂′ and is

given by

PR
x′ = p

R
x′,+ − p

R
x′,−, (41)

where pRx′,± is the probability for observing the recoil with spin along ±x̂′ ≡ (±1, 0, 0)′. Using

Eq. (40), we evaluate this as the ratio of cross sections,

PR
x′ =

dσB,T,R(~P
γ, ~P T ,+1x̂′)− dσB,T,R(~P

γ, ~P T ,−1x̂′)

dσB,T,R(~P γ, ~P T ,+1x̂′) + dσB,T,R(~P γ, ~P T ,−1x̂′)
=
Ax′

A0
. (42)

The ŷ′ and ẑ′ recoil components are evaluated in a similar manner. Thus, the components of

the recoil polarization are determined from Eq. (40), in terms of combinations of the profile

functions and initial polarizations, as

PR
x′ =

Ax′

A0
, PR

y′ =
Ay′

A0
, PR

z′ =
Az′

A0
. (43)

These recoil components determine the orientation of the recoil vector, ~PR, and its magni-

tude,

|~PR| = 1

A0

√

(Ax′)2 + (Ay′)2 + (Az′)2. (44)

It is worth clarifying the relationship between Eqs. (37) or (40) and Eq. (43). Equations (37)

and (40) display the general dependence of the cross section upon the three polarization

vectors, each of which is in a superposition of two spin states. If any one polarization is

not observed, either by not experimentally preparing it (~P γ or ~P T ) or by not detecting it

(~PR), then the terms proportional to that polarization average or sum to zero and drop

out of the cross section. The action of preparing or detecting a polarization forces the

corresponding magnetic substate population into a particular distribution, which in the case

of the recoil polarization is given by Eq. (43). A particular consequence of this is that one

may not substitute Eq. (43) back into Eq. (40) to obtain a cross section that appears to be

independent of recoil polarization.

An expression similar in spirit to Eq. (40) but different in form is given by Adelseck and

Saghai in Ref. [10]. However, there is at least one obvious misprint, with two terms involving

PR
z and Oz but none with PR

z and Ox.
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In practice, the recoil polarization is measured either following a secondary scattering

or, in the case of hyperon channels, through the angular distribution of their weak decays.

KΛ → Kπ−p production provides a particularly efficient channel for recoil measurements.

In the rest frame of the decaying Λ, the angular distribution of the decay proton follows

(1/2)[1 + α|~PΛ| cos(Θp)], where Θp is the angle between the proton momentum and the

lambda polarization direction [20]. Since the analyzing power in this decay is quite high,

α = 0.642±0.013 [21], recoil measurements in modern quasi 4π detectors can be carried out

without significant penalty in statistics. Such measurements then provide information on

combinations of observables through Eq. (43). It is instructive to consider a few examples.

1. Unpolarized beam and target, P γ
L,c = P T = 0: Then A0 = dσ0, A

x′

= 0, Ay′ = P̂ and

Az′ = 0, so that

~PR = (0, P = P̂ /dσ0, 0). (45)

Thus, even when the initial state is completely unpolarized, a measured recoil polar-

ization will be perpendicular to the reaction plane.

2. Unpolarized beam and longitudinally polarized target, P γ
L,c = 0 and ~P T = (0, 0, P T

z ):

Then A0 = dσ0, A
x′

= P T
z L̂x′, Ay′ = P̂ , and Az′ = P T

z L̂z′, so that

~PR = (P T
z Lx′ , P, P T

z Lz′). (46)

Thus a measurement of the components of the recoil polarization determine the Lx′,

P and Lz′ asymmetries.

3. Circularly polarized beam (P γ
c ) and unpolarized target (P T = 0): Then A0 = dσ0,

Ax′

= P γ
c Ĉx′, Ay′ = P̂ , and Az′ = P γ

c Ĉz′, so that

~PR = (P γ
c Cx′, P, P γ

c Cz′). (47)

This is the form assumed in the analysis of the CLAS-g1c data in Ref. [19].

4. Linearly polarized beam (P γ
L) and unpolarized target (P T = 0): Then A0 =

dσ0 − P γ
L cos(2φγ)Σ̂, A

x′

= P γ
L sin(2φγ)Ôx′, Ay′ = P̂ − P γ

L cos(2φγ)T̂ , and Az′ =

P γ
L sin(2φγ)Ôz′, so that

~PR =

(

P γ
L sin(2φγ)Ox′

1− P γ
L cos(2φγ)Σ

,
P − P γ

L cos(2φγ)T

1− P γ
L cos(2φγ)Σ

,
P γ
L sin(2φγ)Oz′

1− P γ
L cos(2φγ)Σ

)

, (48)

which is the form assumed in the analysis of the GRAAL data in Ref. [5].
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5. Circularly polarized beam (P γ
c ) and longitudinally polarized target [~P T = (0, 0, P T

z )]:

Then A0 = dσ0 − P γ
c P

T
z Ê, A

x′

= P γ
c Ĉx′ + P T

z L̂x′, Ay′ = P̂ − P γ
c P

T
z Ĥ, and Az′ =

P γ
c Ĉz′ + P T

z L̂z′ , so that

~PR =

(

P γ
c Cx′ + P T

z Lx′

1− P γ
c P T

z E
,
P − P γ

c P
T
z H

1− P γ
c P T

z E
,
P γ
c Cz′ + P T

z Lz′

1− P γ
c P T

z E

)

. (49)

Here, kinematically and spin complete measurements provide the greatest flexibility.

An initial beam-target analysis summing over final states (i.e., ignoring the recoil)

results in the cross section A0, which determines the E asymmetry and hence the

denominator in Eq. (49). With an analysis, averaging over initial target polarizations

±P T
z , measurements of the recoil polarization vector then determine the Cx′, P and

Cz′ asymmetries. Another pass through the data, averaging instead over initial beam

polarization states, ±P γ
c , and with an analysis of the PR

x′ and PR
z′ recoil components,

gives the Lx′ and Lz′ asymmetries. Finally, by keeping track of both beam and target

polarization states, a measurement of the PR
y′ recoil component gives theH asymmetry.

Although the uncertainty in this determination of H will include the propagation of

errors from P and E, this is expected to be held to a reasonable level in the modern

set of experiments that are now under way. The significance of this determination is

that it has not required the use of a transversely polarized target, as would otherwise

be required by the leading polarization dependence of it in Eq. (37). In general, the

latter would require a completely separate experiment with different systematics.

6. Linearly polarized beam (P γ
L) and longitudinally polarized target [~P T = (0, 0, P T

z )]:

Then A0 = dσ0 − P γ
L cos(2φγ)Σ̂ + P γ

LP
T
z sin(2φγ)Ĝ, Ax′

= P γ
L sin(2φγ)Ôx′ +

P T
z L̂x′ + P γ

LP
T
z cos(2φγ)T̂z′, A

y′ = P̂ − P γ
L cos(2φγ)T̂ + P γ

LP
T
z sin(2φγ)F̂ , and Az′ =

P γ
L sin(2φγ)Ôz′ + P T

z L̂z′ − P γ
LP

T
z cos(2φγ)T̂x′, so that

~PR =

(

P γ
L sin(2φγ)Ox′ + P T

z Lx′ + P γ
LP

T
z cos(2φγ)Tz′

1− P γ
L cos(2φγ)Σ + P γ

LP
T
z sin(2φγ)G

,

P − P γ
L cos(2φγ)T + P γ

LP
T
z sin(2φγ)F

1− P γ
L cos(2φγ)Σ + P γ

LP
T
z sin(2φγ)G

,

P γ
L sin(2φγ)Oz′ + P T

z Lz′ − P γ
LP

T
z cos(2φγ)Tx′

1− P γ
L cos(2φγ)Σ + P γ

LP
T
z sin(2φγ)G

)

. (50)

With such data a beam-target analysis summing over final states (i.e., ignoring the

recoil) determines the cross section A0, and hence the Σ and G asymmetries from
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a Fourier analysis of the φγ dependence. This fixes the denominators in Eq. (50).

With another analysis pass, averaging over initial target polarizations, measurements

of the recoil polarization vector provide a determination of the Ox′, P and T , and Oz′

asymmetries. Another pass through the same data, integrating over φγ , gives the Lx′,

P and Lz′ asymmetries from measurements of the recoil polarization vector. Finally,

a Fourier analysis of beam polarization states, using the difference between opposing

target orientations, P T
z − P T

−z, together with a measurement of recoil polarization

allows the separation of Lx′ and Tz′, F (which would otherwise require a transversely

polarized target), and Lz′ and Tx′.

Thus, by judicious use of recoil polarization and a polarized beam, all 16 observables can

be determined with a longitudinally polarized target (often in several ways), and in so doing

with largely common systematics.

A corresponding set of expressions can be developed for a transversely polarized target,

although they are inherently more complicated since, for fixed target polarization perpen-

dicular to +ẑ, any reaction plane will generally involve both transverse target components

P T
x and P T

y .

7. Unpolarized beam (P γ
L,c = 0) with a transversely polarized target and [~P T =

(P T
x , P

T
y , 0)]: Then A

0 = dσ0 + P T
y T̂ , A

x′

= P T
x T̂x′, Ay′ = P̂ + P T

y Σ̂, and A
z′ = P T

x T̂z′,

so that

~PR =

(

P T
x Tx′

1 + P T
y T

,
P + P T

y Σ

1 + P T
y T

,
P T
x Tz′

1 + P T
y T

)

. (51)

Here an analysis summing over final states (i.e., ignoring the recoil) results in the cross

section A0, and a fit varying P T
y as the reaction plane tilts relative to the direction

of the target polarization determines the T asymmetry. A subsequent analysis of the

recoil polarization components then determines Tx′ , P , Σ, and Tz′ .

8. Circularly polarized beam (P γ
c ) and transverse target polarization [~P T = (P T

x , P
T
y , 0)]:

Then A0 = dσ0+P T
y T̂ +P γ

c P
T
x F̂ , A

x′

= P γ
c Ĉx′ +P T

x T̂x′ −P γ
c P

T
y Ôz′, A

y′ = P̂ +P T
y Σ̂+

P γ
c P

T
x Ĝ, and A

z′ = P γ
c Ĉz′ + P T

x T̂z′ + P γ
c P

T
y Ôx′, so that

~PR =

(

P γ
c Cx′ + P T

x Tx′ − P γ
c P

T
y Oz′

1 + P T
y T + P γ

c P T
x F

,
P + P T

y Σ+ P γ
c P

T
x G

1 + P T
y T + P γ

c P T
x F

,
P γ
c Cz′ + P T

x Tz′ + P γ
c P

T
y Ox′

1 + P T
y T + P γ

c P T
x F

)

.

(52)
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In this case, a beam-target analysis summing over final states (i.e., ignoring the recoil)

results in the cross section A0 containing the terms in the T and F asymmetries, and

these can be separated by first averaging over initial photon states, which removes F . A

subsequent analysis, reconstructing the recoil polarization while averaging over initial

circular photon states allows one to deduce Tx′ and Tz′ from PR
x′ and PR

z′ . Alternatively,

with fixed beam polarization and recoil analysis, a fit varying P T
x and P T

y as the

reaction plane tilts in azimuth relative to the direction of the transversely polarized

target determines all of the asymmetries in the numerators of Eq. (52).

We leave it to the reader to write out the final combination of linearly polarized beam

and transverse target polarization. There the recoil polarization components involve ratios

of 4 to 5 terms each. It remains to be seen if sequential analyses of such data are of practical

use, given limitations on statistics.

VI. RELATING OBSERVABLES TO CGLN AMPLITUDES

We are now in a position to use any set of multipole amplitudes to calculate the four

CGLN amplitudes from Eqs. (15)-(18) and then with these, evaluate (a) the polarization

observables by using the formulae described in the Sec. III and the spin orientations specified

in the tables of Appendix B, and (b) the same observables calculated from the analytic

expressions, as given in Refs. [10, 11] or Refs. [12, 13]. As expected, the absolute magnitudes

from the two methods are the same, but some of their signs are different. In doing so, we

are able to fix the signs of the analytic expressions for the experimental conditions specified
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in Fig. 2 and Appendix B. Our results are:

dσ0 = +ℜe
{

F ∗
1F1 + F ∗

2F2 + sin2 θ(F ∗
3F3/2 + F ∗

4F4/2 + F ∗
2F3 + F ∗

1F4

+cos θF ∗
3F4)− 2 cos θF ∗

1F2} ρ0, (53a)

Σ̂ = − sin2 θℜe {(F ∗
3F3 + F ∗

4F4) /2 + F ∗
2F3 + F ∗

1F4 + cos θF ∗
3F4} ρ0, (53b)

T̂ = + sin θℑm
{

F ∗
1F3 − F ∗

2F4 + cos θ(F ∗
1F4 − F ∗

2F3)− sin2 θF ∗
3F4

}

ρ0, (53c)

P̂ = − sin θℑm
{

2F ∗
1F2 + F ∗

1F3 − F ∗
2F4 − cos θ(F ∗

2F3 − F ∗
1F4)− sin2 θF ∗

3F4

}

ρ0,(53d)

Ê = +ℜe
{

F ∗
1F1 + F ∗

2F2 − 2 cos θF ∗
1F2 + sin2 θ(F ∗

2F3 + F ∗
1F4)

}

ρ0, (53e)

Ĝ = + sin2 θℑm {F ∗
2F3 + F ∗

1F4} ρ0, (53f)

F̂ = + sin θℜe {F ∗
1F3 − F ∗

2F4 − cos θ(F ∗
2F3 − F ∗

1F4)} ρ0, (53g)

Ĥ = − sin θℑm {2F ∗
1F2 + F ∗

1F3 − F ∗
2F4 + cos θ(F ∗

1F4 − F ∗
2F3)} ρ0, (53h)

Ĉx′ = − sin θℜe {F ∗
1F1 − F ∗

2F2 − F ∗
2F3 + F ∗

1F4 − cos θ(F ∗
2F4 − F ∗

1F3)} ρ0, (53i)

Ĉz′ = −ℜe
{

2F ∗
1F2 − cos θ(F ∗

1F1 + F ∗
2F2) + sin2 θ(F ∗

1F3 + F ∗
2F4)

}

ρ0, (53j)

Ôx′ = − sin θℑm {F ∗
2F3 − F ∗

1F4 + cos θ(F ∗
2F4 − F ∗

1F3)} ρ0, (53k)

Ôz′ = + sin2 θℑm {F ∗
1F3 + F ∗

2F4} ρ0, (53l)

L̂x′ = + sin θℜe
{

F ∗
1F1 − F ∗

2F2 − F ∗
2F3 + F ∗

1F4 + sin2 θ(F ∗
4F4 − F ∗

3F3)/2

+ cos θ(F ∗
1F3 − F ∗

2F4)} ρ0, (53m)

L̂z′ = +ℜe
{

2F ∗
1F2 − cos θ(F ∗

1F1 + F ∗
2F2) + sin2 θ(F ∗

1F3 + F ∗
2F4 + F ∗

3F4)

+ cos θ sin2 θ(F ∗
3F3 + F ∗

4F4)/2
}

ρ0, (53n)

T̂x′ = − sin2 θℜe {F ∗
1F3 + F ∗

2F4 + F ∗
3F4 + cos θ(F ∗

3F3 + F ∗
4F4)/2} ρ0, (53o)

T̂z′ = + sin θℜe {F ∗
1F4 − F ∗

2F3 + cos θ(F ∗
1F3 − F ∗

2F4)

+ sin2 θ(F ∗
4F4 − F ∗

3F3)/2
}

ρ0. (53p)

A comparable set of expressions are given by Fasano, Tabakin and Saghai (FTS) in

Ref. [11]. That paper defines the photon polarization using Stokes vectors taken from optics

where right and left circular polarization are interpreted differently. Nonetheless, they as-

sociate photon helicity +1 with what Ref. [11] refers to as r circular polarization. Keeping

this convention and allowing for their different definition of the E beam-target asymmetry,

the above expressions are consistent with those of Ref. [11].
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Comparing the above relations to those given by Knöchlein, Drechsel and Tiator (KDT)

(Appendix B and C of Ref. [13]), six have different signs, the BT observable H , the TR

observable Lx′ and all four of the BR observables Cx′, Cz′, Ox′ and Oz′. The KDT paper [13]

is listed in the MAID on-line meson production analysis [22–24] as the defining reference

for the connection between CGLN amplitudes and polarization observables. To check if

these differences persist in the MAID code we have downloaded MAID multipoles, used

the relations in Eqs. (15)-(18) to construct from these the four CGLN Fi amplitudes, and

then used our equations (53) above to construct observables. Comparing the results to

direct predictions of observables from the MAID code, we find the same six sign differences.

However, in the general form of the cross section given by KDT in Ref. [13] these six

observables appear with a negative coefficient, as opposed to our form of the cross section

in Eq. (37). This is equivalent to interchanging the σ1 and σ2 measurements of Appendix B

that are needed to construct these six observables. The choice of these two measurements

that we list in Appendix B seem the obvious ones. They are, with the exception of the E

asymmetry, the same choices used by FTS in Ref. [11]. Despite the fact that KDT refer

to their definition of observables as common to FTS in Ref. [11], there is evidently a sign

difference for H , Lx′ , Cx′, Cz′, Ox′ and Oz′.

We have conducted a similar test with the GWU/VPI SAID on-line analysis code [25,

26], downloading SAID multipoles, using the relations in Eqs. (15)-(18) to construct from

these the four CGLN Fi amplitudes, and then using our equations (53) above to construct

observables. When the results are compared to direct predictions of observables from the

SAID code, again the same 6 observables (H , Lx′ , Cx′ , Cz′ , Ox′ , Oz′) differ in sign. For the

definition of observables, SAID refers to the Barker, Donnachie and Storrow paper [7]. In

general, the discussion in that paper tends to be too condensed to definitively address signs,

but at least in the cases of H , Ox′ and Oz′ they define the required (B,T,R) measurements

as {L(±π/4), x,−}, {L(±π/4),−, x′} and {L(±π/4),−, z′}, respectively. These appear to

be in agreement with our definitions in Appendix B, which forces us to conclude that the

SAID choice of signs used to construct these six observables from amplitudes is inconsistent

with the assumed definitions of the measurements needed to construct these asymmetries.

We have repeated this same test with the Bonn-Gatchina (BoGa) on-line PWA [27],

downloading BoGa multipoles, using the relations of Eqs. (15)-(18) to construct the four

CGLN amplitudes, and then using our Eqs. (53) to construct observables. Comparing these
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to direct predictions of observables from the BoGa code, the results are identical, except for

the E asymmetry which is of opposite sign. However, for the definition of observables the

BoGa on-line site refers to FTS of Ref. [11], whose definitions are the same as in our Ap-

pendix B except for a sign change in the E asymmetry. Thus, we conclude that the relations

between observables and amplitudes used in the BoGa analysis is completely consistent with

the present work.

New data are emerging from the current generation of polarization experiments which

make these sign differences an important issue. In Ref. [19], recent results for the Cx′

and Cz′ asymmetries have been compared with the direct predictions of the Kaon-MAID

code, ignoring the sign reversal. This has particularly dramatic consequences for the BR

asymmetry Cz′ which is constrained by angular momentum conservation to the value of +1

at θK = 0. This is straightforward to see from Appendix B, where Cz′ = {σ1(+1, 0,+z′)−
σ2(+1, 0,−z′)}/{σ1 + σ2}. When the incident photon spin is oriented along +ẑ, only those

target nucleons with anti-parallel spin can contribute to the production of spin zero mesons

at θK = 0, and the projection of the total angular momentum along ẑ is +1
2
. Thus, the recoil

baryon must have its spin oriented along +ẑ = +ẑ′ at θK = 0, so that σ2 must vanish. The

recent measurements on K+Λ production [19] clearly show this asymmetry approaching +1

at θK = 0, along with MAID predictions approaching −1.

The trends in Cx′ and Cz′ for γp→ K+Λ are illustrated with two energies in Fig. 3. The

data (green circles) are recent CLAS-g1c results from Ref. [19] and these are compared to

the direct predictions from Kaon-MAID (black, dashed), SAID (black, dotted) and BoGa

(blue, dot-dashed) codes. The MAID and SAID predictions clearly have the wrong limits

for Cz′ at 0 and 180 degrees. Also shown are predictions using the multipoles of Juliá-Dı́az,

Saghai, Lee and Tabakin (JSLT) from Ref. [28], passed through our expressions to construct

observables (solid blue curves). The MAID and SAID sign differences are also evident in Cx′,

particularly at low energies where only a few partial waves are contributing - top panels of

Fig. 3. There it is clear that the predictions of the different partial solutions are essentially

very similar, differing only in sign.
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FIG. 3: (Color online) Cx′ (left) and Cz′ (right) for the γp → K+Λ reaction at W = 1680 MeV

(top) and W = 1940 MeV (bottom). Kaon-MAID predictions are dashed (black) [22–24], SAID

predictions are dotted (black) [25, 26], BoGa predictions are dot-dashed (blue) [27] and predictions

from JSLT [28] are solid (blue). The green circles are from Ref. [19].

VII. RELATIONS BETWEEN OBSERVABLES

Since photo-production is characterized by 4 complex amplitudes, Eq. (9), the 16 ob-

servables of Eq. (53) are not independent. There are in fact many relations between them.

The profile functions of Eq. (53) are bilinear products of the CGLN amplitudes, and one

of the more complete sets of equalities interrelating them has been derived by Chiang and

Tabakin from the Fierz identities that relate bilinear products of currents [1]. Such relations

are particularly useful, since they allow the comparison of data on one observable with an

evaluation in terms of products of other observables. Any determination of the amplitude

will invariably require combining data on different polarization observables which in general
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come from different experiments, each having different systematic scale uncertainties. The

Fierz identities provide a means of enforcing consistency. As a practical example, in the

next section we use two of the identities in a multipole analysis to fix the scales of different

data sets in a fit weighted by their systematic errors.

We have numerically checked the 37 Fierz identities of Ref. [1]. Many required revisions

in signs. A corrected set is listed in the first three sections of Appendix C. Another set of

relations has been given by Artru, Richard and Soffer (ARS) [29, 30]. These are different in

form but can be derived from our Fierz identities, although with some differences in signs.

A consistent set is listed in Appendix C4.

In addition to identities, there are a number of inequalities, such as (P )2+(Cx′)2+(Cz′)
2 ≤

1, which are often referred to as positivity constraints [29]. These involve the sums of the

squares of asymmetries, and as such are immune to sign issues. They can be particularly

useful when extracting sets of asymmetries from fits to experimental data [31], as in the

examples discussed in Sec. V. But since our focus here is amplitude reduction from cross

sections and asymmetries, we defer the reader to a recent review of such inequalities [30].

VIII. MULTIPOLE ANALYSES

The ultimate goal of the new generation of experiments now under way is a complete

experimental determination of the multipole decomposition of the full amplitude in pseu-

doscalar meson production. While the data published to date is still insufficient to satisfy

the Chiang and Tabakin requirements for removing ambiguities [1], it is instructive to out-

line the process and examine the impact of recently published polarization measurements.

We focus here on the γp → K+Λ channel, which so far has provided the largest number of

different observables.

To avoid bias, the first stage in any multipole decomposition is a single-energy analysis,

one beam/W energy at a time without any assumptions on energy-dependent behavior. The

range of recent published K+Λ measurements is summarized in Table III. [Cross section

data from the SAPHIR detector at Bonn [32] have an appreciable (20%) angle- and energy-

dependent difference from the CLAS experiments. This level of incompatibility makes it

impossible to include them in the present analyses.] While some of the data sets span the

full nucleon resonance region in extremely fine steps, single-energy analyses are limited by the
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observables with the coarsest granularity, which in this case are the Cx′, Cz′ measurements

(data group 3 [19]). The only published Ox′, Oz′ and T data are from GRAAL (data groups

5 and 8 [5]). The combination of these data sets allows us to combine groups 1-8 at 5

different beam energies, with roughly 100 MeV steps in beam energy, for which 8 different

observables are now available.

A. Coordinate Transformations

There are several different choices for coordinate systems in use and before data from the

different experiments can be combined in a common analysis we transformed them to the

system defined in Fig. 2. The beam-recoil data of group 3 [19] were reported in unprimed

laboratory coordinates. These are related to the primed system of Fig. 2 by the inverse

relations of Eqs. (38)-(39),

Cx′ = Cx cos θK − Cz sin θK ,

Cz′ = Cx sin θK + Cz cos θK . (54)

The GRAAL papers use the coordinates of Adelseck and Saghai [10]. Relative to ŷ′ = ŷ,

their x̂ and ẑ axes are reversed from those of Fig. 2, so that Σ, T and P are unchanged in

transferring to our coordinated, but Ox′,z′ are the negative of what they refer to as Ox,z, so

that

Ox′,z′ = −OGRAAL
x,z . (55)

B. Constraining Systematic scale uncertainties

Each experiment has reported systematic errors that reflect an uncertainty in the scale

of the entire data set, as a group. We use a fairly standard procedure of imposing self-

consistence within a collection of data sets by including their measurement scales as param-

eters in a fit minimizing χ2 [36]. To fix first the scales of the polarization observables, data

groups (2,3,5,6,7,8) of Table III, we use the Fierz identities (L.BR) and (S.br) of Appendix C

to construct the quantities,

FL.BR = ΣP − Cx′Oz′ + Cz′Ox′ − T,

FS.br = O2
x′ +O2

z′ + C2
x′ + C2

z′ + Σ2 − T 2 + P 2 − 1, (56)
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TABLE III: Summary of recent published results on K+Λ photoproduction. (Systematic uncer-

tainties on the CLAS data are taken from the indicated references. The systematic errors on the

GRAAL measurements reflect their reported uncertainty in beam polarization, in the assumed

weak-Λ-decay parameter and in the resulting error propagation through the extraction of Ox′ , Oz′

and T .)

Data Experiment Observables Eγ range (MeV) ∆Eγ/∆W Systematic scale

group W range (MeV) binning error

1 CLAS-g11a [33] dσ0 938-3814 ±8%

1625-2835 10 (Eγ dependent)

2 CLAS-g11a [33] P 938-3814 ±0.05

1625-2835 10

3 CLAS-g1c [19] Cx′ , Cz′ 1032-2741 101 ±0.03

1679-2454

4 CLAS-g1c [34] dσ0 944-2950 25 ±8%

1628-2533 (Eγ dependent)

5 GRAAL [5] Ox′ , Oz′ 980-1466 50 ±4%

1649-1906

6 GRAAL [4] P 980-1466 50 ±3%

1649-1906

7 GRAAL [4] Σ 980-1466 50 ±2%

1649-1906

8 GRAAL [5] T 980-1466 50 ±5%

1649-1906

9 LEPS [35] Σ 1550-2350 100 ±3%

1947-2300

both of which have the expectation value of 0 at each angle and energy. Our fitting procedure

then minimizes the χ2 function,

χ2 =
∑

Eγ

∑

θK

{

[

FL.BR(fix
exp
iθ )

δFL.BR(fiσxiθ
)

]2

i=2,3,5,6,7,8

+

[

FS.br(fix
exp
iθ )

δFS.br(fiσxiθ
)

]2

i=2,3,5,6,7,8

}

+
∑

i

[

fi − 1

σfi

]2

,

(57)
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TABLE IV: Fitted scales for the data sets of Table III that are used to construct the relations in

Eq. (57).

Data group Experiment Observables Fitted scale (fi) Scale error (σfi)

2 CLAS-g11a P 1.000 0.049

3 CLAS-g1c Cx′ , Cz′ 0.984 0.025

5 GRAAL Ox′ , Oz′ 0.997 0.035

6 GRAAL P 1.001 0.030

7 GRAAL Σ 1.001 0.020

8 GRAAL T 0.992 0.040

where the index i ≡ (2, 3, 5, 6, 7, 8) runs through each of the data groups of asymmetries

(xexp.iθ ) needed to construct the Fierz relations of (56). All data from a set i having a

systematic scale error (σfi) are multiplied by a common factor (fi) while adding (fi−1)2/σ2
fi

to the χ2. This last term weights the penalty for choosing a normalization scale different

from unity by the reported systematic uncertainty of the experiment.

In this procedure polynomial fits are used, where needed, to interpolate the data of Ta-

ble III to a common angle and energy. There are two measurements of the recoil polarization

asymmetry (P ), from groups 2 and 6 in Table III, and a weighted mean of these data, in-

cluding their scale factors, is used in evaluating Eq. (57). The scale factors resulting from

this fit are listed in Table IV. All are close to unity. The resulting evaluations of the Fierz

relation, using the scaled data, are shown in Fig. 4.

While the results in Fig. 4 scatter around zero as expected, the fluctuations are sometimes

appreciable. These cannot readily be removed with an energy- and angle-independent scale

factor. It is likely this results from combining data from different detectors. While global

uncertainties such as flux normalization and target thickness can be readily estimated and

easily fitted away in this type of procedure, angle-dependent variations in detector efficiencies

tend to be the most problematic to control and quantify.
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FIG. 4: (Color online) Evaluations of the two Fierz relations (L.BR) (solid red circles) and (S.br)

(open blue squares) of Eq. (56), using the data of Table III and the fitted scales of Table IV.

C. Multipole fitting procedure

The observables of Table III are determined by the CGLN amplitudes through Eq. (53),

and these are in turn determined by the multipoles through Eqs. (15)-(18). Since the

multipoles are reduced matrix elements and independent of angle, fitting them directly

allows the use of complete angular distributions for each observable. We fix the scales (fi) of

the polarization observables (Σ, T , P , Cx′, Cz′, Ox′, Oz′) to their fitted values in Table IV,

and now vary the multipoles, as well as the scales f1 and f4 for the unpolarized cross section
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FIG. 5: (Color online) Fitted scales for the cross section (dσ0) measurements of Ref. [33], f1 as red

circles, and Ref. [34], f4 as green diamonds.

(dσ0) measurements (groups 1 and 4 in Table III) to minimize the χ2 function,

χ2 =
Ns
∑

i=1







Ni
∑

j=1

[

fix
exp
ij − xfitij (

~ζ)

fiσxij

]2






+
∑

i=1,4

[

fi − 1

σfi

]2

, (58)

where Ns is the number of independent data sets, each having Ni points. x
exp
ij and σxij

are

the j-th experimental datum from the i-th data set and its associated measurement error,

respectively, xfitij (
~ζ) is the value predicted from the ~ζ multipole set being fit, and fi is the

global scale parameter associated with the i-th data set. As before, the last term weights

the penalty for choosing a cross section scale different from unity by the reported systematic

uncertainties for data groups 1 and 4 [36].

Thus our fitting procedure is a two-step process, first minimizing Eq. (57) by varying

the scale factors of the polarization data, and then minimizing Eq. (58) in a second step by

varying the multipoles and the cross section scales. These two cannot be combined into a

single step in which Fierz relations such as Eq. (56) are minimized by varying multipoles,

since all properly constructed multipoles will automatically satisfy the Fierz identities.

While the cross section experiments report the global systematic uncertainties listed

in Table III, comparisons given in Ref. [33] show a clear energy dependence to the scale

difference between them, which is most pronounced at low energies. Accordingly, we have

fitted separate cross section scales at each energy and the results are plotted in Fig. 5.

Cross sections for any reaction generally fall with increasing angular momentum, which

guarantees the ultimate convergence of a multipole expansion. However, in practice such
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expansions must be truncated to limit the maximum angular momentum to a value that is

essentially determined by the statistical precision and breadth of kinematic coverage of the

data sets. The ultimate goal of such work will be the identification of the excited states of

the nucleon, and this will require, as a minimum, accurate multipole information up to at

least L = 2 to be useful. As has been shown by Bowcock and Burkhardt [37], the highest

multipole fitted in any analysis always tends to accumulate the systematic errors stemming

from truncation and is essentially guaranteed to be the most uncertain. Thus, when focusing

on multipoles up to L = 2 we must vary up to L = 3 and fix the multipoles for 4 ≤ L ≤ 8

to their (real) Born values. (Details of the Born amplitudes are given in Appendix D.)

To search for a global minimum while allowing for the presence of local minima, we use a

Monte Carlo sampling of the multipole parameter space. Values for the real and imaginary

parts of the 0 ≤ L ≤ 3 multipoles are chosen randomly and their χ2 comparison to the

data of Table III, scaled by the fitted constants in Table IV and Fig. 5, are calculated.

Whenever the resulting χ2 is within 104 of the current best, a gradient minimization is

carried out. We have repeated this procedure for a wide range of Monte Carlo samples, up

to 107 per energy, and have found a band of solutions with tightly clustered χ2 that cannot

be distinguished by the existing data. In Figs. 6 and 7 we plot the real and imaginary parts

of 300 multipole solutions for which the gradient search has converged to a minimum. The

χ2/point of each solution within these bands is always within 0.2 of the best, and is even

more tightly clustered at low energies.

The best and largest values of the χ2/point for these bands are listed in Table V. (The

corresponding multipole solutions are shown as the solid black and blue dashed curves in

Figs. 6 and 7, respectively.) The fact that most of the χ2/point values are substantially

less than one is a sign that fitting multipoles up to L = 3 provides more freedom than the

present collection of data warrant, even though the desired physics demands it.

As a minimum, the bands in Figs. 6 and 7 reflect a relatively shallow valley in the χ2

space. In an effort to understand if this valley is smooth, indicating a simple broad minimum,

or is pitted with many local minima, we have tracked solutions across χ2. This can be done

by forming a hybrid amplitude Ah(x) from two solutions A1 and A2:

Ah(x) = A1 ×
(

1− x

100

)

+ A2 ×
( x

100

)

, x ∈ [0, 100]. (59)

Here x is an effective distance in amplitude-space. For x = 0, Ah is just A1 while for x = 100,
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TABLE V: Best and largest values of the χ2/point for the solutions in the bands plotted in Figs. 6

and 7.

Eγ / W (MeV) Best χ2/point Largest χ2/point

1027 / 1676 0.49 0.54

1122 / 1728 0.59 0.62

1222 / 1781 0.52 0.62

1321 / 1833 0.74 0.92

1421 / 1883 0.97 1.15

Ah becomes A2. At each value of x between 0 and 100 the hybrid set of multipoles is used

to predict observables and the χ2 relative to the data is calculated. If the valley between A1

and A2 were smooth and featureless the resulting χ2 map would be similarly featureless. We

have carried out this exercise between many pairs of solutions and always found pronounced

peaks in χ2 between any pair of A1 and A2. As an example, the χ2/point that results from

forming a hybrid amplitude out of the best and largest (worst) solutions of Figs. 6 and 7 is

shown in Fig. 8 for two of the energy bins of Table V. (Similar results are obtained at other

energies.) At Eγ = 1122 MeV (W = 1728 MeV), in the bottom panel of Fig. 8, the peak in

χ2 between the two is huge. At Eγ = 1421 MeV (W = 1883 MeV) the intermediate peak

is still present, though not so tall, probably due to the presence of another local minimum

that is nearby but off the direct trajectory between the two solutions.

Evidently the bands in Figs. 6 and 7 are created by clusters of local minima in χ2 which,

for the present collection of data, are completely degenerate and experimentally indistin-

guishable. The 8 observables in Table III do not yet satisfy the Chiang and Tabakin (CT)

criteria as a minimal set that would determine the photoproduction amplitude free of am-

biguities [1]. Nonetheless, from studies with mock data we have found that the presence of

multiple local minima is essentially universal, even when the CT criteria are satisfied. But,

as more observables are added with increasing statistical accuracy the degeneracy is broken

and a global minimum emerges. The difficulty then becomes finding it among the pitted

landscape in χ2. Studies of this problem are ongoing and will be discussed elsewhere.
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FIG. 6: (Color online) Real parts of multipoles for L = 0 to 3, fitted to the data of Table III with

the phase of the E0+ fixed to 0. The bands show variations in the χ2/point of less than 0.2, as

in Table V. Solutions with the best and largest χ2, corresponding to the columns of Table V, are

shown as solid (black) and long-dashed (blue) curves, respectively.
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FIG. 7: (Color online) Imaginary parts of multipoles for L = 0 to 3, fitted to the data of Table III

with the phase of the E0+ fixed to 0. The bands show variations in the χ2/point of less than 0.2,

as in Table V. Curves are as in Fig. 6.
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FIG. 8: The χ2/point calculated by comparing the data of Table III to predictions as a hybrid

amplitude [Eq. (59)] is tracked between the solutions with the best and largest χ2 in Table V (solid

black and dashed blue curves in Figs 6 and 7, respectively). Results are shown for Eγ (W ) energies

of 1122 (1728) MeV in the bottom panel and 1421 (1883) MeV in the top.

D. Constraining the arbitrary phase

In determining an amplitude there is one overall phase that can never be constrained,

and so in fitting the solutions of Figs. 6 and 7 we have chosen to fix the phase of the E0+

multipole to zero (which sets its imaginary part to zero). The consequence of not fixing a

phase is illustrated in Fig. 9, where we plot as an example the S and P wave multipoles

from fits with an unconstrained phase angle. Again, the solutions within these bands have

values for the χ2/point that are always within 0.2 of the best. While these bands appear

to be substantially broader, they are in fact just the bands of Figs. 6 and 7, expanded by

36



FIG. 9: (Color online) Real (top four panels in red) and imaginary (bottom four panels in green)

of the S and P wave multipoles, fitted to the data of Table III without any phase constraints. The

bands show variations in the χ2/point of less than 0.2.

rotating with a random phase angle. The behavior of the L = 2 (D) and L = 3 (F ) waves

show a similar broadening.

In practice, the utility of determining a set of multipoles is not diminished by fixing one

phase. Ultimately, such experimentally determined multipoles will be compared to model

predictions. For this, one only has to rotate the model phase to the same reference point,

e.g., a real E0+ in the analysis of Figs. 6 and 7. (The result of such an exercise is shown in

Figs. 12 and 13.)

The choice of which multipole phase to fix at zero is somewhat arbitrary. From studies
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with mock data, generated from a known amplitude and gaussian smeared to mimic experi-

ment, we have found that it is sufficient to fix the phase of any one of the larger multipoles

(L = 0, 1) when the data to be fit have modest statistically accuracy. Ultimately, if the data

precision is very high, just fixing the higher L multipoles at their real Born values is enough

to recover the amplitude.

E. Constraints from observables – present and future prospects

Predictions of the fitted multipole solutions are compared to the data of Table III in

Figs. 10 and 11 for two beam energies, 1122 and 1421 MeV. The best and worst solutions

from the bands of Figs. 6 and 7, in terms of the χ2/point values of Table V, are shown as the

solid (black) and dashed (blue) curves, respectively. The behavior at other energies is very

similar. Based on such comparisons with existing published data, the multipole solutions

within the bands of Figs. 6 and 7 are completely indistinguishable. Clearly, despite the

presence of 8 polarization observables, the multipoles are still very poorly constrained. For

many of the higher multipoles not even the sign is known.

In Figs. 12 and 13 we compare the S, P and D wave multipoles from existing PWA

results (BoGa [27], MAID [22], SAID [25] and JSLT [28]) with the bands of Figs. 6 and 7,

respectively. Here we have rotated all multipoles to our common reference point of a real

E0+. (Each set of multipoles has been multiplied by exp(−iδ), where δ is the phase of the

E0+ multipole of the PWA set.) For the most part, these PWA lie within our experimental

solution bands. However, there are a few exceptions at the higher energies, in particular

the M2− multipole from Kaon-MAID (black dashed curve in Fig. 13) and the E2− and M2−

multipoles from JSLT (blue solid curves in Fig. 12). The upper end of our analysis range

is near a potentially new N∗(∼ 1900). The Kaon-MAID [24] and JSLT groups [28] have

associated this feature with the D13 partial wave, which should resonate in either the E2−

or M2− multipoles. However, our model-independent analysis excludes such conclusions,

since their solutions lie outside the experimental bands in these partial waves. On the other

hand, the BoGa analysis [38] has recently modeled the N∗(∼ 1900) as a P13 resonance, which

should manifest itself in either the E1+ orM1+ multipoles. The BoGa solution is consistently

within the experimental solution bands of Figs. 12 and 13. (It is also the only PWA analysis

that included the CLAS-g1c and GRAAL data sets in fits of their model parameters.) We
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FIG. 10: (Color online) Predictions at Eγ = 1122 MeV (W = 1728 MeV) compared to the data

of Table III for the multipole solutions of Figs. 6 and 7 having the minimum (solid black curves)

and largest (long-dashed blue curves) χ2/point (Table V). Data points are from CLAS-g11a [33]

shown in red, CLAS-g1c [19, 34] shown in green, and GRAAL [4, 5] shown in blue.

can conclude that their assignment is consistent with the experimental solution bands, but

cannot yet confirm it due to the significant width of these bands.

We have investigated a number of possible ways in which additional data may lead to

narrower multipole bands and improved amplitude definition. For the most part, existing

data does not reach to extreme angles (near 0◦ and 180◦), which in general tend to be more

sensitive to interfering multipoles of opposite parity. In fact, the best and worst solutions at

Eγ = 1122 MeV (W = 1728 MeV) exhibit a dramatic difference in the predicted unpolarized
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FIG. 11: (Color online) Predictions at Eγ = 1421 MeV (W = 1883 MeV) compared to the data of

Table III for the multipole solutions of Figs. 6 and 7 having the minimum (solid black curves) and

largest (long-dashed blue curves) χ2/point (Table V). Data points are plotted as in Fig. 10.

cross section at 180◦ – compare the solid (black) and dashed (blue) curves in Fig. 10. (The

extreme angles of the asymmetries are constrained by symmetry to either 0 or ±1, and so

contain little additional information.) As a test, we have created mock cross section data at

0◦ and 180◦, centered on the best solutions of Table V with a statistical error of ±0.03µb/sr.

When the fits are repeated with these mock points added to the CLAS and GRAAL data

sets, variations such as seen in Fig. 10 disappear, but few of the resulting bands of multipole

solutions are improved. While the M1+, M1− and E2− are slightly narrowed at low energies,

generally, there is little improvement over the trends of Figs. 6 and 7.
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FIG. 12: (Color online) The solution bands of Fig. 6, compared to the real parts of PWA multipoles

of BoGa [27] (blue dashed-dot), Kaon-MAID [22] (black dashed), SAID [25] (black dotted) and

JSLT [28] (blue solid).

The data of Table III span a significant range in statistical precision. From preliminary

analyses of data from an ongoing generation of new CLAS experiments we can anticipate

result on the Σ, T , Ox′ and Oz′ asymmetries that will have roughly an order of magnitude

improvement over the GRAAL data set. To simulate the effect of such an improvement, we

have arbitrarily reduced the statistical errors on the GRAAL Σ, T , Ox′ and Oz′ asymmetries

by a factor of 3 and repeated the fits. Apart from an increase in χ2, due to undulations in

the angular distributions that are now artificially beyond the level of statistical fluctuations,

there are no significant changes in any of the multipole bands of Figs. 6 and 7.
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FIG. 13: (Color online) The solution bands of Fig. 7, compared to the imaginary parts of PWA

multipoles of BoGa [27] (blue dashed-dot), Kaon-MAID [22] (black dashed), SAID [25] (black

dotted) and JSLT [28] (blue solid).

Ongoing analyses of new experiments are expected to yield data on all 16 observables.

We can get some inkling of the effect of such an expanded data set by examining the impact

that the GRAAL measurements of (Σ, T , Ox′, Oz′) have made so far. In Fig. 14 we show

the S and P wave multipoles obtained if the GRAAL data are removed from the fitting

procedure. Comparing these results to Figs. 6 and 7, it is clear that the M1+ band has

dramatically narrowed with the inclusion of the GRAAL polarization results. Lesser but

still significant gains in definition occur in most of the multipoles. The range of values for

the χ2/point within these bands are similar to those of Table V. In Fig. 15 we show the
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FIG. 14: (Color online) Real (top 4 panels in red) and imaginary (bottom 4 panels in green)

of the S and P wave multipoles, fitted to the CLAS data of Table III (excluding the GRAAL

measurements). Solutions with the best (1.07) and largest (1.18) χ2 are shown as solid (black) and

long-dashed (blue) curves, respectively.

predictions of the band at 1421 MeV beam energy (W = 1883 MeV), as represented by

the solutions with the minimum χ2/point = 1.07 and the maximum χ2/point = 1.18. Not

surprisingly, predictions for the observables where data have been removed from the fit are

now wildly varied.

There are several conclusions that can be drawn from this analysis, along with reasons

for genuine hope. When the χ2/point is near or even better than 1, solutions differing in

the χ2/point by something like 0.2 are not experimentally distinguishable. The existence
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FIG. 15: (Color online) Predictions at Eγ = 1421 MeV (W = 1883 MeV) from a multipole fit to the

CLAS data from CLAS-g11a [33] shown in red and CLAS-g1c [19, 34] shown in green, excluding

the GRAAL results. The solid black and long-dashed blue curves show the solutions (Fig. 14)

having the minimum (1.07) and largest (1.18) χ2/point.

of bands of multipole solutions, each with small χ2/point, indicates a shallow χ2 surface,

pitted with many local minima. Certainly the width of the bands evident in Figs. 6 and 7

precludes using the existing data to hunt for resonances. However, comparing Fig. 14 and

Figs. 6 and 7, the gains evident from the GRAAL polarization observables are significant,

even though the GRAAL errors are substantially larger than most of the CLAS data. CLAS

data on all 16 photoproduction observables are now under analysis. The fact that such

data have all been accumulated within a single detector is likely to minimize the problems
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evident in Fig. 4. Furthermore, with a large number of different observables will come a

large number of the Fierz identities, which can be used to constrain the systematic scale

uncertainties.

IX. SUMMARY

It is anticipated that data will soon be available on all 16 pseudoscalar meson photo-

production observables from a new generation of ongoing experiments, certainly for KΛ

final states and possibly for πN channels as well. This will significantly reduce the model

dependence in the study of excited baryon structure by providing a total amplitude that is

experimentally determined to within a phase. Such an experimental amplitude can be uti-

lized at two levels, first as a test to validate total amplitudes associated with different models

and second as a starting point that can be analytically continued into the complex plane to

search for poles. Here we have laid the ground work for this by assembling a consistent set

of equations needed for amplitude reduction from experiment and have demonstrated the

first stage of interaction with theoretical models.

In summary, we have used direct numerical evaluations, Eqs. (32)-(35), to verify the most

general analytic form of the cross section, dependent on the three polarization vectors of

the beam, target and recoil baryon, including all single, double and triple-polarization terms

involving the 16 possible spin-dependent observables [Eq. (37)]. (Copies of the associated

computer code are available upon request [39].) We have explicitly listed the experimental

measurements needed to construct each observable in pseudoscalar meson photoproduction

(Appendix B) and provided a consistent set of equations relating these quantities to the

CGLN amplitudes [Eq. (53)], and from these to electromagnetic multipoles. We have used

our independent method of numerical evaluation to resolve sign differences that exist in

the literature. We have found the BoGa PWA to be completely self-consistent and in

agreement with the present work, once one accounts for a difference in the definition of the

E asymmetry. We find the MAID PWA to be completely self-consistent, but with a different

choice of signs in the definitions of the six H , Lx′ , Cx′, Cz′, Ox′ and Oz′ asymmetries, which

is the negative of what is commonly assumed by experimental groups. Comparing to the

SAID PWA, we find sign differences when compared to our work in the same six observables.

The papers documenting the SAID PWA do not include analytic expressions for the general
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cross section or explicit definitions of the observables, referring rather to BDS [7] for the

latter. Although the notation in the BDS paper is rather condensed, their definitions of

observables appear to agree with ours, which forces us to conclude that the SAID choice of

signs is not internally self-consistent. We have numerically checked the signs in the 37 Fierz

identities that interrelate the 16 spin-dependent observables and have provided a consistent

set (Appendix C).

We have used the assembled machinery to carry out a multipole analysis of the γp →
K+Λ reaction, free of model assumptions, and examined the impact of recently published

measurements on 8 different observables. We have used a combined Monte Carlo sampling

of the amplitude space, with gradient minimization, and have found a shallow χ2 valley

pitted with a very large number of local minima that results in broad bands of multipole

solutions, which are experimentally indistinguishable (Figs. 6 and 7). Comparing to models

that have recently reported a new N∗(∼ 1900), we can exclude PWA that include a new D13

since their amplitudes lie outside the model-independent solution bands in the associated

multipoles. (These PWA were carried out before most of the data used in our analysis were

available.) Recent BoGa analyses have modeled the N∗(∼ 1900) as a P13 resonance. While

their solution lies with our experimental multipole bands, we cannot yet validate it due to

the significant width of the bands.

From our studies, as well as simulations with mock data, we have seen that clusters of

local minima in χ2 are always present. With the current collection of results on 8 observables,

these minima are completely degenerate and experimentally indistinguishable. In studies

with mock data we have seen this degeneracy broken with high precision data on large

numbers of observables. As in the present analysis, a greater number of different observables

tend to be more effective in creating a global minimum than higher precision. We conclude

that, while a general solution to the problem of determining an amplitude free of ambiguities

may require 8 observables, as has been discussed by CT [1], such requirements assume data

of arbitrarily high precision. Experiments with realistically achievable uncertainties will

require a significantly larger number.
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Appendix A: General expression for the differential cross section with fixed polar-

izations

We summarize here the derivation of an analytic expression for the differential cross

section in pseudoscalar meson photoproduction with general values of the beam, target

and recoil polarization. Following the formalism of the spin density matrices described by

FTS [11], one can write the general cross section [Eq. (35)] as,

dσB,T,R(~P
γ, ~P T , ~PR) = ρ0(ρ

R)kn(Fµ)nm(ρ
T )ml(F

†
λ)lk(ρ

γ)µλ. (A1)

(Throughout this appendix the same indices in equations imply taking summation.) Here

ρ0 = k/q; (Fλ)msΛ
msN

= 〈msΛ |FCGLN|msN 〉, in which the spin states of the initial and final

baryons are quantized in the z-direction and the (unit) photon polarization vector is taken

to be circularly polarized with the helicity λ.

The 2× 2 spin density matrix ρX for X = γ, T, R is given by

ργ =
1

2
[1+ ~Pγ · ~σ], (A2)

ρT =
1

2
[1+ ~P T · ~σ], (A3)

ρR =
1

2
[1+ ~PR · ~σ], (A4)

where ~σ is the Pauli spin vector, as in Eq. (24), and ~Pγ is the so-called Stokes vector

for the photon polarizations [11]. Note that in the x-y-z coordinate (see Fig. 2), ~Pγ =

(−P γ
L cos 2φγ,−P γ

L sin 2φγ, P
γ
c ).
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Substituting Eqs. (A2)-(A4) into Eq. (A1), we have

dσB,T,R(~P
γ, ~P T , ~PR) = ρ0

1

2
(1+ ~PR · ~σ)kn(Fµ)nm

1

2
(1 + ~P T · ~σ)ml(F

†
λ)lk

1

2
(1+ ~Pγ · ~σ)µλ

=
ρ0
8
(1+ ~PR · ~σ)kn

[

(Fλ)nm(F
†
λ)mk + (Fµ)nm(F

†
λ)mk

~Pγ · ~σµλ

+(Fλ)nm ~P
T · ~σml(F

†
λ)lk + (Fµ)nm ~P

T · ~σml(F
†
λ)lk

~Pγ · ~σµλ
]

. (A5)

Noting that dσ0 = (ρ0/4)N where N = (Fλ)nm(F
†
λ)mn, the above equation can be further

expanded as

dσB,T,R(~P
γ, ~P T , ~PR) =

dσ0
2

{

1 + ( ~Pγ)a
(Fµ)kn(F

†
λ)nkσ

a
µλ

N + (~P T )a
(Fλ)knσ

a
nm(F

†
λ)mk

N

+(~PR)a
′ σa′

kn(Fλ)nm(F
†
λ)mk

N

+(~P T )a( ~Pγ)b
(Fµ)kmσ

a
ml(F

†
λ)lkσ

b
µλ

N + (~PR)a
′

( ~Pγ)b
σa′

kn(Fµ)nl(F
†
λ)lkσ

b
µλ

N

+(~PR)a
′

(~P T )a
σa′

kn(Fλ)nmσ
a
ml(F

†
λ)lk

N

+ (~PR)a
′

(~P T )a( ~Pγ)b
σa′

kn(Fµ)nmσ
a
ml(F

†
λ)lkσ

b
µλ

N

}

=
dσ0
2

{

1 + ( ~Pγ)aΣa + (~P T )aT a + (~PR)a
′

P
a′

+(~P T )a( ~Pγ)bCBT
ab + (~PR)a

′

( ~Pγ)aCBR
ab + (~PR)a

′

(~P T )aCTR
a′b

+(~PR)a
′

(~P T )a( ~Pγ)bCBTR
a′ab

}

. (A6)

In the last step we have introduced

Σa =
(Fµ)kn(F

†
λ)nmσ

a
µλ

N , (A7)

T
a =

(Fλ)knσ
a
nm(F

†
λ)mk

N , (A8)

P
a′ =

σa′

kn(Fλ)nm(F
†
λ)mk

N , (A9)

CBT
ab =

(Fµ)knσ
a
nm(F

†
λ)mkσ

b
µλ

N , (A10)

CBR
a′b =

σa′

kn(Fµ)nm(F
†
λ)mkσ

a
µλ

N , (A11)

CTR
a′b =

σa′

kn(Fλ)nmσ
a
ml(F

†
λ)lk

N , (A12)

CBTR
a′ab =

σa′

kn(Fµ)nmσ
a
ml(F

†
λ)lkσ

b
µλ

N . (A13)
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Also, in Eqs. (A6)-(A13) the inner products ~Pγ · ~σ and ~P T · ~σ are expressed with the

components in the unprimed x-y-z coordinate, while in the primed x′-y′-z′ coordinate for

that of recoil baryon ~PR · ~σ: ~Pγ · ~σ = ( ~Pγ)aσa = ( ~Pγ)xσx + ( ~Pγ)yσy + ( ~Pγ)zσz and ~P T ·
~σ = (~P T )aσa = (~P T )xσx + (~P T )yσy + (~P T )zσz whereas ~PR · ~σ = (~PR)a

′

σa′ = (~PR)x
′

σx′

+

(~PR)y
′

σy′ + (~PR)z
′

σz′, where (σx′

, σy′ , σz′) is related to the Pauli matrices (24) through

Eqs. (38) and (39). (If the unprimed x-y-z coordinates are used also to express ~PR · ~σ, then
one obtain unprimed observables.)

We note that Σa, T a, P a, CBT
ab , CBR

a′b , and C
TR
a′b are exactly the same as those defined in

Ref. [11]. The CBTR
a′ab term was not included in Ref. [11], since they did not discuss the triple

polarization case. Each component in Eqs. (A7)-(A13) can be related with 16 observables

defined in Tables VI-IX of Appendix B:

ΣxB = Σ, T yT = T, P y′
R = P, (A14)

CBT
zT zB

= −E, CBT
zT yB

= −G, CBT
xT zB

= F, CBT
xT yB

= −H, CBT
yTxB

= P, (A15)

CBR
z′
R
zB

= Cz′, C
BR
z′
R
yB

= −Oz′ , C
BR
x′

R
zB

= Cx′, CBR
x′

R
yB

= −Ox′, CBR
y′
R
xB

= T, (A16)

CTR
z′
R
zT

= Lz′, C
TR
z′
R
xT

= Tz′ , C
TR
x′

R
zT

= Lx′ , CTR
x′

R
xT

= Tx′, CTR
y′
R
yT

= T, (A17)

CBTR
y′
R
xT yB

= −E, CBTR
y′
R
xT zB

= G, CBTR
y′
R
zT yB

= −F, CBTR
y′
R
zT zB

= −H,
CBTR

x′

R
yT yB

= −Cz′ , C
BTR
x′

R
yT zB

= −Oz′, C
BTR
z′
R
yT yB

= Cx′, CBTR
z′
R
yT zB

= Ox′,

CBTR
x′

R
xTxB

= Lz′, CBTR
x′

R
zT xB

= −Tz′, CBTR
z′
R
xTxB

= −Lx′ , CBTR
z′
R
zTxB

= Tx′,

CBTR
y′
R
yTxB

= 1.

(A18)

Here all other components not explicitly shown are identically zero; these result from sym-

metry constraints.

Finally, we also note that the spin density matrices (A2)-(A4) can be expressed as

ργ =
∑

P̂=P̂ γ
1 ,P̂ γ

2

p
γ

P̂

1

2
[1+ P̂P̂ · σ], (A19)

ρT =
∑

Q̂=±P̂T

p
T
Q̂

1

2
[1 + Q̂ · σ], (A20)

ρR =
∑

R̂=±P̂R

p
R
R̂

1

2
[1+ R̂ · σ]. (A21)

Here pX
P̂
is the probability observing particle X polarized in the P̂ direction; P̂P̂ is the Stokes

vector specified by the unit photon polarization vector P̂ ; P̂ γ
2 is a unit photon polarization
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vector perpendicular to P̂ γ
1 ≡ P̂ γ for linearly polarized photons, while P̂ γ

1 and P̂ γ
2 express

two different helicity states for circularly polarized photons. The non-unit polarization

vectors can be expressed with the unit polarization vectors as ~P γ = (pγ
P̂ γ
1

− p
γ

P̂ γ
2

)P̂ γ, ~P T =

(pT
+P̂T

−pT
−P̂T

)P̂ T , and ~PR = (pR
+P̂R

−pR
−P̂R

)P̂R. Substituting Eqs. (A19)-(A21) into Eq. (A1),

one obtain the relation between the general cross sections with unit and non-unit polarization

vectors [Eq. (35)].

Appendix B: Constructing Observables from Measurements

We tabulate here the pairs of measurements needed to construct each of the 16 transverse

photoproduction observables in terms of the polarization orientation angles of Fig. 2. The

photon beam is characterized either by its helicity, hγ for circular polarization, or by φL
γ for

linear polarization. Assuming 100% polarizations, each observable Â = Adσ0 is determined

by a pair of measurements, each denoted as σ(B, T,R); “unp” indicates the need to average

over the initial spin states of the target and/or beam, and to sum over the final spin states of

the recoil baryon. For observables involving only beam and/or target polarizations, dσ0 =

(1/2)(σ1 + σ2) and Â = (1/2)(σ1 − σ2). For observables involving the final state recoil

polarization, dσ0 = (σ1 + σ2) and Â = (σ1 − σ2).

TABLE VI: The cross section and the observables with only one polarization in their leading term

of Eq. (37); dσ0 = β(σ1 + σ2) and Â = β(σ1 − σ2), where β = 1 (β = 1/2) if recoil polarization is

(is not) observed.

dσ0, Σ, T , P Beam Target Recoil

Observable (σ1 − σ2) hγ φL
γ θp φp θp′ φp′

dσ0 unp unp unp unp unp unp

2Σ̂ σ1 = σ(⊥, 0, 0) - π/2 unp unp unp unp

σ2 = σ(‖, 0, 0) - 0 unp unp unp unp

2T̂ σ1 = σ(0,+y, 0) unp unp π/2 π/2 unp unp

σ2 = σ(0,−y, 0) unp unp π/2 3π/2 unp unp

P̂ σ1 = σ(0, 0,+y′) unp unp unp unp π/2 π/2

σ2 = σ(0, 0,−y′) unp unp unp unp π/2 3π/2
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TABLE VII: Observables with both beam and target polarization in their leading terms of Eq. (37);

dσ0 = (1/2)(σ1 + σ2) and Â = (1/2)(σ1 − σ2).

B-T Beam Target Recoil

Observable (σ1 − σ2) hγ φL
γ θp φp θp′ φp′

2Ê σ1 = σ(+1,−z, 0) +1 - π 0 unp unp

σ2 = σ(+1,+z, 0) +1 - 0 0 unp unp

2Ê σ1 = σ(+1,−z, 0) +1 - π 0 unp unp

σ2 = σ(−1,−z, 0) −1 - π 0 unp unp

2Ĝ σ1 = σ(+π/4,+z, 0) - π/4 0 0 unp unp

σ2 = σ(+π/4,−z, 0) - π/4 π 0 unp unp

2Ĝ σ1 = σ(+π/4,+z, 0) - π/4 0 0 unp unp

σ2 = σ(−π/4,+z, 0) - 3π/4 0 0 unp unp

2F̂ σ1 = σ(+1,+x, 0) +1 - π/2 0 unp unp

σ2 = σ(−1,+x, 0) −1 - π/2 0 unp unp

2F̂ σ1 = σ(+1,+x, 0) +1 - π/2 0 unp unp

σ2 = σ(+1,−x, 0) +1 - π/2 π unp unp

2Ĥ σ1 = σ(+π/4,+x, 0) - π/4 π/2 0 unp unp

σ2 = σ(−π/4,+x, 0) - 3π/4 π/2 0 unp unp

2Ĥ σ1 = σ(+π/4,+x, 0) - π/4 π/2 0 unp unp

σ2 = σ(+π/4,−x, 0) - π/4 π/2 π unp unp
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TABLE VIII: Observables with both beam and recoil polarization in their leading terms in Eq. (37);

dσ0 = (σ1 + σ2) and Â = (σ1 − σ2).

B-R Beam Target Recoil

Observable (σ1 − σ2) hγ φL
γ θp φp θp′ φp′

Ĉx′ σ1 = σ(+1, 0,+x′) +1 - unp unp π/2 + θK 0

σ2 = σ(−1, 0,+x′) −1 - unp unp π/2 + θK 0

Ĉx′ σ1 = σ(+1, 0,+x′) +1 - unp unp π/2 + θK 0

σ2 = σ(+1, 0,−x′) +1 - unp unp 3π/2 + θK 0

Ĉz′ σ1 = σ(+1, 0,+z′) +1 - unp unp θK 0

σ2 = σ(−1, 0,+z′) −1 - unp unp θK 0

Ĉz′ σ1 = σ(+1, 0,+z′) +1 - unp unp θK 0

σ2 = σ(+1, 0,−z′) +1 - unp unp π + θK 0

Ôx′ σ1 = σ(+π/4, 0,+x′) - π/4 unp unp π/2 + θK 0

σ2 = σ(−π/4, 0,+x′) - 3π/4 unp unp π/2 + θK 0

Ôx′ σ1 = σ(+π/4, 0,+x′) - π/4 unp unp π/2 + θK 0

σ2 = σ(+π/4, 0,−x′) - π/4 unp unp 3π/2 + θK 0

Ôz′ σ1 = σ(+π/4, 0,+z′) - π/4 unp unp θK 0

σ2 = σ(−π/4, 0,+z′) - 3π/4 unp unp θK 0

Ôz′ σ1 = σ(+π/4, 0,+z′) - π/4 unp unp θK 0

σ2 = σ(+π/4, 0,−z′) - π/4 unp unp π + θK 0
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TABLE IX: Observables with both target and recoil polarization in their leading terms of Eq. (37);

dσ0 = (σ1 + σ2) and Â = (σ1 − σ2).

T -R Beam Target Recoil

Observable (σ1 − σ2) hγ φL
γ θp φp θp′ φp′

L̂x′ σ1 = σ(0,+z,+x′) unp unp 0 0 π/2 + θK 0

σ2 = σ(0,−z,+x′) unp unp π 0 π/2 + θK 0

L̂x′ σ1 = σ(0,+z,+x′) unp unp 0 0 π/2 + θK 0

σ2 = σ(0,+z,−x′) unp unp 0 0 3π/2 + θK 0

L̂z′ σ1 = σ(0,+z,+z′) unp unp 0 0 θK 0

σ2 = σ(0,−z,+z′) unp unp π 0 θK 0

L̂z′ σ1 = σ(0,+z,+z′) unp unp 0 0 θK 0

σ2 = σ(0,+z,−z′) unp unp 0 0 π + θK 0

T̂x′ σ1 = σ(0,+x,+x′) unp unp π/2 0 π/2 + θK 0

σ2 = σ(0,−x,+x′) unp unp π/2 π π/2 + θK 0

T̂x′ σ1 = σ(0,+x,+x′) unp unp π/2 0 π/2 + θK 0

σ2 = σ(0,+x,−x′) unp unp π/2 0 3π/2 + θK 0

T̂z′ σ1 = σ(0,+x,+z′) unp unp π/2 0 θK 0

σ2 = σ(0,−x,+z′) unp unp π/2 π θK 0

T̂z′ σ1 = σ(0,+x,+z′) unp unp π/2 0 θK 0

σ2 = σ(0,+x,−z′) unp unp π/2 0 π + θK 0
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Appendix C: The Fierz Identities

We list here the Fierz identities relating asymmetries, with corrected signs. The equation

numbering sequence in Appendices C1-C3 is that of Chiang and Tabakin [1]. Compared

to the latter, signs have changed in all but (L.1), (L.4-6), (Q.r), (Q.bt.3), (Q.tr.1-2), and of

course the six Squared relations. Sign changes in eight of the equations can be attributed

to the different definition for the E asymmetry used by Fasano, Tabakin and Saghai [11], to

which Chiang and Tabakin refer. [We note that sign changes in another 15 equations could

have been explained if the definition of the beam asymmetry (Σ) were also reversed; but our

definition of Σ in Table A1 is identical to that of Fasano, Tabakin and Saghai [11].]

1. Linear-Quadratic relations

1 ={Σ2 + T 2 + P 2 + E2 +G2 + F 2 +H2

+O2
x′ +O2

z′ + C2
x′ + C2

z′ + L2
x′ + L2

z′ + T 2
x′ + T 2

z′}/3.
(L.0)

Σ = +TP + Tx′Lz′ − Tz′Lx′. (L.TR)

T = +ΣP − Cx′Oz′ + Cz′Ox′. (L.BR)

P = +ΣT +GF + EH. (L.BT)

G = +PF +Ox′Lx′ +Oz′Lz′. (L.1)

H = +PE +Ox′Tx′ +Oz′Tz′. (L.2)

E = +PH − Cx′Lx′ − Cz′Lz′ . (L.3)

F = +PG+ Cx′Tx′ + Cz′Tz′. (L.4)

Ox′ = +TCz′ +GLx′ +HTx′. (L.5)

Oz′ = −TCx′ +GLz′ +HTz′. (L.6)

Cx′ = −TOz′ − ELx′ + FTx′ . (L.7)

Cz′ = +TOx′ − ELz′ + FTz′. (L.8)

Tx′ = +ΣLz′ +HOx′ + FCx′. (L.9)
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Tz′ = −ΣLx′ +HOz′ + FCz′. (L.10)

Lx′ = −ΣTz′ +GOx′ − ECx′. (L.11)

Lz′ = +ΣTx′ +GOz′ − ECz′. (L.12)

2. Quadratic relations

Cx′Ox′ + Cz′Oz′ + EG− FH = 0. (Q.b)

GH − EF − Lx′Tx′ − Lz′Tz′ = 0. (Q.t)

Cx′Cz′ +Ox′Oz′ − Lx′Lz′ − Tx′Tz′ = 0. (Q.r)

ΣG− TF −Oz′Tx′ +Ox′Tz′ = 0. (Q.bt.1)

ΣH − TE +Oz′Lx′ − Ox′Lz′ = 0. (Q.bt.2)

ΣE − TH + Cz′Tx′ − Cx′Tz′ = 0. (Q.bt.3)

ΣF − TG+ Cz′Lx′ − Cx′Lz′ = 0. (Q.bt.4)

ΣOx′ − PCz′ +GTz′ −HLz′ = 0. (Q.br.1)

ΣOz′ + PCx′ −GTx′ +HLx′ = 0. (Q.br.2)

ΣCx′ + POz′ − ETz′ − FLz′ = 0. (Q.br.3)

ΣCz′ − POx′ + ETx′ + FLx′ = 0. (Q.br.4)

TTx′ − PLz′ −HCz′ + FOz′ = 0. (Q.tr.1)

TTz′ + PLx′ +HCx′ − FOx′ = 0. (Q.tr.2)

TLx′ + PTz′ −GCz′ − EOz′ = 0. (Q.tr.3)

TLz′ − PTx′ +GCx′ + EOx′ = 0. (Q.tr.4)
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3. Squared relations

G2 +H2 + E2 + F 2 + Σ2 + T 2 − P 2 = 1. (S.bt)

O2
x′ +O2

z′ + C2
x′ + C2

z′ + Σ2 − T 2 + P 2 = 1. (S.br)

T 2
x′ + T 2

z′ + L2
x′ + L2

z′ − Σ2 + T 2 + P 2 = 1. (S.tr)

G2 +H2 − E2 − F 2 − O2
x′ − O2

z′ + C2
x′ + C2

z′ = 0. (S.b)

G2 −H2 + E2 − F 2 + T 2
x′ + T 2

z′ − L2
x′ − L2

z′ = 0. (S.t)

O2
x′ −O2

z′ + C2
x′ − C2

z′ − T 2
x′ + T 2

z′ − L2
x′ + L2

z′ = 0. (S.r)

4. ARS-Squared relations

Here we include a set of squared relations from Artru, Richard and Soffer (ARS) [30].

These can be derived from combinations of relations in the preceding sections. For example,

the first, (ARS.S.bt), can be obtained by combining Eqs. (S.bt) and (L.BT). Our relations

differ in sign from ARS in those terms involving F , Cx′ and Cz′, and as a result there are

sign differences in Eqs. (ARS.S.bt), (ARS.S.br) and (ARS.btr1).

(1± P )2 = (T ± Σ)2 + (E ±H)2 + (G± F )2. (ARS.S.bt)

(1± T )2 = (P ± Σ)2 + (Cx′ ∓Oz′)
2 + (Cz′ ± Ox′)2. (ARS.S.br)

(1± Σ)2 = (P ± T )2 + (Lx′ ∓ Tz′)
2 + (Lz′ ± Tx′)2. (ARS.S.tr)

(1± Lz′)
2 = (Σ± Tx′)2 + (E ∓ Cz′)

2 + (G± Oz′)
2. (ARS.btr1)

(1± Tx′)2 = (Σ± Lz′)
2 + (F ± Cx′)2 + (H ± Ox′)2. (ARS.btr2)

Appendix D: Born amplitudes for γN → KΛ

In this Appendix, we summarize the Born amplitudes for γ(q) + p(p) → K+(k′) + Λ(p′)

in the center of mass energy (~p = −~q, ~p′ = −~k′), which are used to fix high partial waves

(4 ≤ L ≤ 8) in the multipole analyses presented in Sec. VIII. We consider the following

Born terms for Iµǫµ [see the paragraph including Eq. (6) for the description of Iµǫµ]:

Iµǫµ = Ia + Ib + Ic + Id + Ie + If , (D1)
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where

Ia = i
fKNΛ

mK
6k′γ5

1

6p′+ 6k′ −mN
ΓN(q

2)F (|~k′|,ΛKNΛ), (D2)

Ib = i
fKNΛ

mK

ΓΛ(q
2)

1

6p− 6k′ −mΛ

6k′γ5F (|~k′|,ΛKNΛ), (D3)

Ic = i
fKNΣ

mK
ΓΛΣ(q

2)
1

6p− 6k′ −mΣ
6k′γ5F (|~k′|,ΛKNΣ), (D4)

Id = −iefKNΛ

mK
6ǫγγ5F (|~k′|,ΛKNΛ), (D5)

Ie = ie
fKNΛ

mK

6 k̃γ5
k̃2 −m2

K

(k̃ + k′) · ǫγF (|~̃k|,ΛKNΛ), (D6)

If = −egK∗NΛgK∗K+γ

mK
[γδ +

κK∗NΛ

2(mN +mΛ)
(γδ 6 k̃− 6 k̃γδ)]

×ǫαβηδ k̃ηqαǫβγ
1

k̃2 −m2
K∗

F (|~̃k|,ΛK∗NΛ), (D7)

with k̃ = p− p′ and

ΓN = e{6ǫγ −
κN
4mN

[6ǫγ 6q− 6q 6ǫγ ]}, (D8)

ΓΛ = −e κΛ
4mN

[6ǫγ 6q− 6q 6ǫγ ], (D9)

ΓΛΣ = −e κΛΣ
4mN

[6ǫγ 6q− 6q 6ǫγ ]. (D10)

Also, we have introduced the dipole form factors F (|~k|,Λ) for the hadronic vertex defined

as

F (|~k|,Λ) =
(

Λ2

|~k|2 + Λ2

)2

. (D11)

We make use of the SU(3) relation for the coupling constants,

fKNΛ

mK

=
fπNN

mπ

−3 + 2α√
3

, (D12)

fKNΣ

mK
=

fπNN

mπ

3− 4α√
3

, (D13)

gK∗NΛ = gρNN
−3 + 2α√

3
, (D14)

κK∗NΛ

mN +mΛ
=

κρ
2mN

, (D15)

and take parameters as fπNN =
√
0.08× 4π, κp = µp − 1 = 1.79, α = 0.635, gρNN = 8.72,

κρ = 2.65, gγK∗K+/mK = 0.254GeV−1, κΛ = −0.61, and κΛΣ = −1.61. As for the cutoff
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factors, we take ΛKNΛ = ΛKNΣ = ΛK∗NΛ = 500 MeV.
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