Determination of the Azimuthal Asymmetry of Deuteron Photodisintegration in the Energy Region $E_{\gamma}=1.1-2.3$ GeV

THE GEORGE WASHINGTON UNIVERSITY

Jefferson Lab

Nicholas Zachariou

CLAS collaboration Feb. 2012

Outline

- g13 experiment
- Analysis
- Systematic Studies
- Results
- Summary

The g13 Experiment

- LD₂ target 40 cm long
- Two photon polarization settings

 Circular: g13a
 - o Linear: g13b

<u>g13b</u>

- Two orientations of linear polarization (Para & Perp)
- Data obtained for 6 photonenergy bins 200 MeV wide between 1.1–2.3 GeV
- ~30 billion events collected

Particle ID

$$\Delta\beta = \beta_{meas} - \beta_{calc}$$

$$\beta_{calc} = \frac{p}{\sqrt{p^2 + m_0^2}}$$

$$\beta_{meas} = \frac{d_{TOF-ST}}{t_{TOF-ST}}$$

 3σ cuts determined from fitting the different *p* bins with a Gaussian

Ph.D. Defense: Azimuthal Asymmetry of Deuteron Photodisintegration

6

- Background subtraction
 - **Probabilistic event weighting**^{*}: Calculate probability of a given event being a signal event by fitting the missing-mass distribution of a given bin in θ and ϕ with a predetermined function

$$g(m_X^2) = Ae^{-\frac{1}{2}\left(\frac{m_X^2 - \mu}{\sigma}\right)^2}$$

Background:

$$b(m_X^2) = A_1 e^{A_2 m_X^2} + B_1 e^{B_2 m_X^2}$$

- Enhancements
 - Remove incoherent bremsstrahlung effects and tagger channel-to-channel fluctuations

Analysis Photon Polarization

- Analytic bremsstrahlung calculation
 Degree of polarization depends on:
 - Orientation of the crystal radiator
 - Beam collimation
 - Beam energy and divergence

5 fit parameters

- θ Angle: beam/crystal plane
- σ Gaussian smearing of hetabeam divergence multiple scattering
- $heta_r$ Angle of collimation
- σ_r Smearing factor

Amplitudes of peaks

 $I_2^0, I_4^0, \dots, I_6^0$

Asymmetry Determination

 $N(\phi)_{\parallel,\perp} \propto F_{\parallel,\perp} (1 \pm P_{\parallel,\perp} \Sigma \cos(2[\phi + \phi_0])) A(\phi)$

if
$$F_{||} = F_{\perp}$$

and $P_{||} = P_{\perp} = P$
then $\frac{N(\phi)_{||} - N(\phi)_{\perp}}{N(\phi)_{||} + N(\phi)_{\perp}} = P\Sigma \cos 2(\phi - \phi_0)$

•10

Asymmetry Determination

 $N(\phi)_{\parallel,\perp} \propto F_{\parallel,\perp} (1 \pm P_{\parallel,\perp} \Sigma \cos(2[\phi + \phi_0])) A(\phi)$

• 11

Source	Study	Value
Photon Polarization – P_{γ}	M. Dugger, Private Communication	$\sim 5\%$
Offset – ϕ_0	$\phi_0 = -0.047^\circ \text{ vs } \phi_0 = 0.297^\circ *$	< 0.2%
Flux ratio – F_R	F_R^{min} vs F_R^{max}	< 0.5%
ϕ -bin Width	$\Delta \phi = 12.5^{\circ} \text{ vs } \Delta \phi = 25.0^{\circ}$	$\sim 7\%$
Particle ID cuts	$3\sigma \text{ vs } 2\sigma \Delta\beta \text{ cuts}$	$\sim 7\%$
Missing-mass cuts	$3\sigma \text{ cut vs } 2\sigma \text{ cut}$	$\sim 5\%$
Fiducial Cuts	nominal vs $\sim 3^{\circ}$ tighter cuts	$\sim 3\%$
Background Subtraction	Probabilistic event weighting vs Bin scaling	$\sim 7\%$

Photon Polarization

- Estimated to be ~7%
- Propagates to asymmetry through P_R and P
- Systematic due to P_R : ~0.1%
- Systematic due to \bar{P} :~5.0%

• Compared asymmetries obtained using upper and lower limits of ϕ_0 ($\phi_0^{min} = -0.047^\circ$, $\phi_0^{max} = 0.297^\circ$)

 Compared asymmetries obtained using upper and lower limits of flux ratios E_{γ} Bin (GeV) $\overline{F_R}$ ΔF_R 1.1 - 1.31.293 ± 0.010 1.3 - 1.51.032 ± 0.009 \mathbf{N} 1.5 - 1.71.119 ± 0.013 Legend + F^{min} 1.7 - 1.90.930 ± 0.015 0.8 1.9 - 2.11.233 ± 0.038 2.1 - 2.30.944 ± 0.039 0.6 E^{edge}=1.3 GeV ALO 0.4 0.025 $\overline{\Delta \Sigma}_{sust}^{F_{H}} = 0.0002_{\pm 0.0009}$ 0.2 0.00 0.015 0 0.0 -0.2 0.005 -0.4 -0.005 0 20 40 60 80 100 120 140 160 180 $\theta_{c.m.}$ (deg) Ben (deg) $\overline{\Delta\Sigma}^{F_R} = 0.0002_{\pm 0.0009} - 0.004_{\pm 0.013}$

- Compared asymmetries obtained using 17 and 29 bins in $\phi~(\Delta\phi=25.0^\circ,~\Delta\phi=12.5^\circ)$

 $\overline{\Delta\Sigma}^{\Delta\phi} = 0.0065_{\pm 0.0072} - 0.009_{\pm 0.049}$ •16

Systematic Studies Particle ID

- Compared asymmetries obtained using 2 σ and 3 σ $\Delta\beta$ cut

•17

Missing-mass cut

 Compared asymmetries obtained using 2σ and 3σ missing-mass cut

Systematic Studies Fiducial cuts

 Compared asymmetries obtained using nominal and ~3 degrees tighter fiducial cuts

Background subtraction

 Compared asymmetries obtained using probabilistic event weighting and bin scaling

Asymmetries compared to QGSM

- Σ determined over 6 photon-energy bins MeV wide)
- Σ shows a rich structure with minima at 90° at low photon energies and maxima at higher
- QGSM predicts maxima at higher energies but fails to side adequate predictions for lower

Asymmetries compared to HRM

- Σ determined over 6 photon-energy bins MeV wide)
- Σ shows a rich structure with minima at 90° at low photon energies and maxima at higher
- HRM predicts minima at lower energies but fails to give adequate predictions at higher

asymmetry vs photon energy

- Σ determined for 5θbins (width varies between 5° and 30°)
- Extends available results to higher energies (and all angles)
- Σchanges sign for backward angles
- Σ(90°) contradicts
 predictions of pQCD
 (Σ(90°) →1)
- Results hint a transition between E_γ = 1.6 - 1.8 GeV (change in production mechanism?)

asymmetry vs photon energy

- Results agree with previous experiments
- Σ(90°) contradicts predictions of pQCD (Σ(90°) →-1)
- Results hint a transition between E_γ = 1.6 - 1.8 GeV (change in production mechanism?)

Summary

- Presented the analysis steps followed for the determination of the azimuthal asymmetry
- Statistical uncertainties range between 0.02 and 0.10 with systematic uncertainties between ~0.04 and ~0.20
- The available theoretical description of the dynamics of this reaction does not explain the data
- Analysis note in progress.

 P_R determined from the polarization tables

• Ph.D. Detente: arie of the parameter $\overline{P}\Sigma$ of Deuteron Photodisintegration

Performed by Daria Sokhan

Asymmetry Determination

• Ph.D. Defense: Azimuthal Asymmetry of Deuteron Photodisintegration

• 27 * Performed by Daria Sokhan

- Identifying the incident photon
 - Events with more than 1 photon with coincidence time <1 ns are excluded from further analysis

- Coherent-edge position drift
 - Photon polarization had to be determined for each coherent edge position

- Procedure: Pass 0
 - o Initial fitting
 - Fix two parameters that describe the beam collimation
 - Fit all other bins

- Procedure: Pass 0
 - Determine behavior of fit parameters with coherent-edge position

Procedure: Pass 1

Pass 0 results were used in Pass 1 to rescal to rescal to rescal the enhancements.
 Crucial for bins with low statistics

Crucial for bins with low statistics

- Procedure: Pass 1
 - Compare between the enhancement from the data and enhancement from fitting
 - Correct photon polarization to account for differences between the fit and

Procedure: Pass 1

- Account for statistical fluctuation in corrections
- Only systematic differences are taken into account

•33

- Procedure: Pass 1
 - Determine the degree of photon polarization

• Particle ID

$$\Delta\beta = \beta_{meas} - \beta_{calc}$$

$$\beta_{calc} = \frac{P_{EVNT}}{\sqrt{P_{EVNT}^2 + m_{PDG}^2}}$$

$$\beta_{meas} = \beta_{EVNT}$$

•35

Analysis Event selection

• Particle ID

Event selection

Fiducial Cuts Remove regions were the CLAS acceptance changes rapidly

•37

Background subtraction: Probabilistic Event Weighting

DBW: 200 Events

DBW: 500 Events

Background subtraction: Signal-to-total ratio

Calculate signal-to-total ratio for each bin in theta and phi, then use this to weight all events in the bin

Analysis Beam-Line position

X and Y vertex positions in multipletrack events is determined via the MVRT routine that minimizes the distance to each track, weighted by the appropriate error from the covariance matrix of each track

Mean position determined by Gaussian fits

•40

Determined asymmetry using 3 different values of flux ratio

Case 1: Flux ratio was treated as a parameter

Case 2: Flux ratio value fixed to the weighted average: 0.909

Case 3: Flux ratio value fixed to the value extracted using

integrated theta bin: 0.912

Analysis Missing Mass Distribution

Before Analysis Cuts

After Analysis Cuts

- Background subtraction
 - Performed using probabilistic event weighting: Probability of a given event being a signal event using a dynamic bin width (number of events)

$$\begin{aligned} d_{i,j} &= \left(\frac{\cos\theta_i - \cos\theta_j}{2}\right)^2 + \left(\frac{\phi_i - \phi_j}{2\pi}\right)^2 \\ &\text{Signal: Gaussian} \\ g(m_X^2, A, \mu, \sigma) &= Ae^{-\frac{1}{2}\left(\frac{m_X^2 - \mu}{\sigma}\right)^2}, \\ &\text{Background: two exponentials} \\ b(m_X^2, A_1, A_2, B_1, B_2) &= A_1e^{A_2m_X^2} \\ &+ B_1e^{B_2m_X^2}. \end{aligned}$$

Systematics

Photon Energy	Source of			0	Photon Energy	Source of		-	Orrenall
Bin (GeV)	Systematic	$ \Delta \Sigma $	$\sigma_{\overline{\Delta\Sigma}}$	Overall	Bin (GeV)	Systematic	$ \Delta \mathcal{L} $	$U\overline{\Delta\Sigma}$	Overall
1.1 - 1.3	Photon Polarization	5%	-	Depending on Σ	1.7 - 1.9	Photon Polarization	5%	_	Depending on Σ
	ϕ_0 offset	0.0	0.0003	0.015 ± 0.027		ϕ_0 offset	0.0	0.0003	
	Flux Ratio	0.0002	0.0009			Flux Ratio	0.0013	0.0019	
	ϕ -bin width	0.015	0.017			ϕ -bin width	0.015	0.019	
	Particle ID cuts	0.0015	0.0092			Particle ID cuts	0.007	0.023	0.017 ± 0.041
	Missing-mass cuts	0.003	0.015			Missing-mass cuts	0.005	0.019	
	Fiducial cuts	0.0	0.0095			Fiducial cuts	0.0	0.015	
	Background Subtraction	0.0011	0.0071			Background Subtraction	0.0	0.015	
1.3 – 1.5	Photon Polarization	5%	-	Depending on Σ 0.008 ± 0.025	1.9 - 2.1	Photon Polarization	5%	—	Depending on Σ
	ϕ_0 offset	0.0	0.0003			ϕ_0 offset	0.0003	0.0007	
	Flux Ratio	0.0006	0.0013			Flux Ratio	0.0017	0.0054	
	ϕ -bin width	0.0065	0.0072			ϕ -bin width	0.012	0.044	
	Particle ID cuts	0.004	0.012			Particle ID cuts	0.027	0.025	0.048 ± 0.072
	Missing-mass cuts	0.003	0.015			Missing-mass cuts	0.020	0.022	
	Fiducial cuts	0.0017	0.0089			Fiducial cuts	0.018	0.027	
	Background Subtraction	0.0	0.012			Background Subtraction	0.027	0.038	
1.5 - 1.7	Photon Polarization	5%	-	Depending on Σ		Photon Polarization	5%	—	Depending on Σ
	ϕ_0 offset	0.0002	0.0004	0.028 ± 0.062	2.1 - 2.3	ϕ_0 offset	0.0004	0.0011	
	Flux Ratio	0.0010	0.0011			Flux Ratio	0.004	0.013	
	ϕ -bin width	0.025	0.046			ϕ -bin width	0.009	0.049	
	Particle ID cuts	0.0	0.022			Particle ID cuts	0.017	0.040	0.080 ± 0.12
	Missing-mass cuts	0.011	0.032			Missing-mass cuts	0.021	0.089	
	Fiducial cuts	0.0	0.011			Fiducial cuts	0.062	0.047	
	Background Subtraction	0.004	0.011			Background Subtraction	0.041	0.023	