Olga María Cortés

Idaho State University

April 16, 2016

Table of contents

- 2 Experimental setup• CLAS Detector
- 3 Data Analysis
 - Event Selection
 - Method for Beam Asymmetry extraction

Preliminar Results

5 Conclusion

Motivation

Motivation

- Baryon spectroscopy helps to understand the link between quark based models with QCD. Quark based models predict resonances that have not been experimentally observed.
- Studies of different channels should help finding "missing resonances"
- Resonances are broad and overlap. Spin observables are necessary to differentiate between resonant contributions.

Motivation

ω channel

- s-channel dominant for high t.
- Previous data from GRAAL compared with Zhao model.(v. Vegna et al. PhysRevC.91.065207 (2015))

Figure: Oh, Y.; Titov, A. I.; Lee, T.-S. H., NSTAR 2001 proceedings

Experimental setup

CLAS Detector

CEBAF: Continuous Electron Beam Accelerator Facility

CLAS: CEBAF Large Acceptance Spectrometer

Data Analysis

Event Selection

 $ec{\gamma} p(n)
ightarrow \omega p(n)$ with $\omega
ightarrow \pi^+ \pi^- \pi^0$ and $\pi^0
ightarrow \gamma \gamma$

cut	description		
PID charged particles	3σ for $\Delta\beta$ momentum dependent		
PID photons	$\beta > 0.95$		
tagged photon	$\Delta t_{\gamma\pi^-} < 2$ ns		
π^0 reconstruction	3σ for $IM^2(\gamma\gamma)$		
charged particles time	$\Delta t_{\pi^-\pi^+}$ and $\Delta t_{\pi^-p} < 2ns$		
other	fiducial, momentum and energy corrections, missing momentum		

Figure: Invariant mass squared of the three pions for missing mass squared $0.6 < M^2(\vec{\gamma}d \rightarrow p\pi^+\pi^-\pi^0 X) < 0.65 GeV/c^2$

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\parallel} - \left(\frac{dN}{d\phi}\right)^{\perp}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{F_R - 1 + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{F_R + 1 + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\parallel}}{F^{\perp}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\bar{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit.

• *P_R* and *P* are found using the polarization tables.

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\parallel} - \left(\frac{dN}{d\phi}\right)^{\perp}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{F_R - 1 + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{F_R + 1 + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\parallel}}{F^{\perp}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\overline{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit.

- P_R and \overline{P} are found using the polarization tables.
- Calculate *F_R* based on a fit over the (1) integrated over all the cos θ bins.

$E_{\gamma}(GeV)$	P_R	Ē
1.1-1.3	0.88	0.754
1.3-1.5	1.01	0.782
1.5-1.7	0.96	0.750
1.7-1.9	0.94	0.676
1.9-2.1	0.99	0.730
2.1-2.3	1.02	0.695

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\parallel} - \left(\frac{dN}{d\phi}\right)^{\perp}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{F_R - 1 + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{F_R + 1 + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\parallel}}{F^{\perp}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\overline{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit.

- *P_R* and *P̄* are found using the polarization tables.
- Calculate *F_R* based on a fit over the (1) integrated over all the cos θ bins.

Figure: Example for $2.1 < E_{\gamma} < 2.3 GeV$

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\parallel} - \left(\frac{dN}{d\phi}\right)^{\perp}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{F_R - 1 + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{F_R + 1 + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\parallel}}{F^{\perp}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\overline{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit.

- P_R and \overline{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the cos θ bins.
- $\phi_0 = 0$ as suggested by large statistics channel study

$E_{\gamma}(GeV)$	F _R	χ^2/NDF
1.1-1.3	0.485 ± 0.015	1.098
1.3-1.5	1.024 ± 0.015	1.325
1.5-1.7	1.198 ± 0.014	1.358
1.7-1.9	0.914 ± 0.009	0.875
1.9-2.1	1.056 ± 0.011	0.677
2.1-2.3	1.058 ± 0.012	0.727

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Data Analysis

Method for Beam Asymmetry extraction

$$\frac{\left(\frac{dN}{d\phi}\right)^{\parallel} - \left(\frac{dN}{d\phi}\right)^{\perp}}{\left(\frac{dN}{d\phi}\right)^{\parallel} + \left(\frac{dN}{d\phi}\right)^{\perp}} = \frac{F_R - 1 + \frac{F_R P_R + 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}{F_R + 1 + \frac{F_R P_R - 1}{P_R + 1} 2\bar{P} \Sigma \frac{\sin \Delta \phi}{\Delta \phi} \cos\left(2(\phi - \phi_0)\right)}$$
(1)

with the flux ratio $F_R = \frac{F^{\parallel}}{F^{\perp}}$, polarization ratio $P_R = \frac{P^{\parallel}}{P^{\perp}}$, average of the polarization $\overline{P} = \frac{P^{\parallel} + P^{\perp}}{2}$, $\frac{\sin \Delta \phi}{\Delta \phi}$ correction for the bin width $\Delta \phi$ and ϕ_0 is the offset of the photon polarization vector ¹. We fix all but one variable in the fit.

- P_R and \overline{P} are found using the polarization tables.
- Calculate F_R based on a fit over the (1) integrated over all the cos θ bins.
- $\phi_0 = 0$ as suggested by large statistics channel study

¹Ref. N. Zachariou PhysRevC.91.055202 (2015)

Preliminar Results

Preliminary Results. Only statistical errors are shown

Figure: Beam Spin Asymmetry for $1.1 < E_{\gamma} < 2.3 GeV$ in energy bins of $\Delta E_{\gamma} = 200 MeV$

Conclusion

Conclusion and future work

- * The method described before can be used to analyse quasi-free omega photoproduction data.
- * We have enough statistics to calculate the Beam Spin asymmetry for energies between $1.1 < E_{\gamma} < 2.3 GeV$
- * Background studies have to be done in order to compare our results with the GRAAL data (study already started, suggests that the background is not polarized).
- * Systematic errors have to be calculated
- * The Beam asymmetry for the ω can give us a hint about different missing resonances contributions for this channel

THANK YOU!