Photoprduction of  $\omega$  mesons off bounded proton with the CLAS detector at JLab

Olga M. Cortes Becerra Idaho State University

> Advisor: Philip L. Cole Lamar University

APS Meeting 2018

This work is funded by NSF Grant: PHY-1615146

### Motivation

- Baryon spectroscopy needs to be studied simultaneously with structure studies.
  - Information of underlying degrees of freedom
- 6 "missing resonances" issue
  - Study of multiple channels that might couple strongly with missing resonances
- 🖉 Not a "bump hunt"
  - Need of cross section and polarization observables





## Why $\omega$ meson?



Spectrum is poorly understood over 1700 MeV. Since threshold for  $\omega$  meson is higher than  $\pi$  and  $\eta$  mesons thresholds, it should give information of higher mass resonance

Isospin filter: only N\* contribute

Particle  $J^P$ Νγ Νπ Νη Νσ Νω ΛΚ ΣΚ Νρ Δπ overall  $N = 1/2^+$ \*\*\*\*  $N(1440) 1/2^+$ \*\*\*\*  $N(1520) 3/2^{-1}$ \*\*\*\*  $N(1535) 1/2^{-}$ \*\*\*\*  $N(1650) 1/2^{-}$ \*\*\*\*  $N(1675) 5/2^{-}$ \*\*\*\*  $N(1680) 5/2^+$ \*\*\*\*  $N(1700) 3/2^{-}$ \*\*\*  $N(1710) 1/2^+$ \*\*\*\*  $N(1720) 3/2^+$ \*\*\*\*  $N(1860) 5/2^+ **$  $N(1875) 3/2^{-}$ \*\*\*  $N(1880) 1/2^+ **$ \*\*  $N(1895) 1/2^{-} **$  $N(1900) 3/2^+ ***$  $N(1990) 7/2^+ **$  $N(2000) 5/2^+ **$  $N(2040) 3/2^+ *$  $N(2060) 5/2^{-} **$  $N(2100) 1/2^+ *$  $N(2120) 3/2^{-} **$  $N(2190) 7/2^{-}$ \*\*\*\*  $N(2220) 9/2^+$ \*\*\*\* \*\*\*  $N(2250) 9/2^{-}$ \*\*\*\* \*\*\*:  $N(2300) 1/2^+ **$  $N(2570) 5/2^{-} **$  $N(2600) 11/2^{-} ***$ \*\*\*  $N(2700) 13/2^+ **$ \*\*

Status as seen in

\*\*\*\* Existence is certain, and properties are at least fairly well explored.

\*\*\* Existence is very likely but further confirmation of decay modes is required.

\*\* Evidence of existence is only fair.

Evidence of existence is poor.

#### Particle Data group 2016



### Data Analysis: Event Reconstruction $\gamma l \rightarrow l$

Charged particle identification



Incident photon identification

4 ∆t<sub>ne</sub> (ns)



p(n)

 $\pi^0$ 

 $\pi^0$ 

### Data analysis: Event reconstruction

n²(π⁺π⁻π⁰) (GeV/c²)

ω

η

250









#### **Preliminary Results**



# Systematic Uncertainty Estimate

| Source of uncertainty                | $ \mu_{\Delta\Sigma} $ |                                        |
|--------------------------------------|------------------------|----------------------------------------|
| $\phi_0 \text{ offset}$              | $10^{-6}$              |                                        |
| Photon flux ratio                    | $\sim 0.001$           |                                        |
| Polarization ratio                   | < 1%                   |                                        |
| Mean polarization                    | 5%                     | Largest source of uncertainty          |
| Neutral particle cut                 | 0.017                  |                                        |
| Incident photon identification       | 0.001                  |                                        |
| Out of time cut                      | 0.000                  |                                        |
| z-vertex cut                         | 0.009                  |                                        |
| Missing momentum cut                 | 0.021                  | Compared 0.2 GeV/c with 0.15 GeV/c cut |
| Dilution factor and $3 - \sigma$ cut | 0.010                  |                                        |

## Conclusions

- The  $\omega$  channel is relevant in the study of missing resonances predicted constituent quark models
- We calculated the Beam Spin asymmetry for the photoproduced  $\omega$  mesons off the bounded proton in the deuteron for  $E_{\gamma} = 1.1 2.3$  GeV.
- Comparison with previous quasi-free data from GRAAL collaboration (V. Vegna et al.) agrees at low energy bins. The amplitude of the asymmetry reported in this work is larger than GRAAL reported results at  $E_{\gamma} = 1.45$  GeV.
- Our results, compared to the free events reported from CLAS collaboration (P. Collins et al.) are in general smaller in amplitude for middle angle rage.
- We estimated the systematic uncertainty of the beam asymmetry due to the missing momentum cut as 0.021. Possible small FSI background over the quasi-free events. This needs to be furthered analyzed.

THANK YOU!