THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

ω-meson
Σ beam asymmetry in photoproduction on the bound proton

Olga M. Cortés Becerra

This presentation is part of the research done under the supervision of Prof. Philip Cole

Overview

- Introduce the motivation for studying polarized observables in the context of baryon spectroscopy.
 - Why studying photoproduction of ω meson.
 - State of the art for ω photoproduction off the free proton
- ✓ Why studying photoproduction off the bound proton.
- Experimental Layout
- ✓ Methodology
- ✓ Results on the quasi-free region
 - Discussion

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Motivation

Observable extraction for multiple channels:

Cross section and polarization observables

Why ω meson?

- $E_{\gamma} > 1.7 \text{ GeV}$
- Isospin filter only N*
- Narrow peak, easy to identify

		Status as seen in								
Particle J^P	overall	$N\gamma$	$N\pi$	$N\eta$	$N\sigma$	$N\omega$	ΛK	ΣK	$N\rho$	$\Delta \pi$
$N = 1/2^+$	****									
$N(1440) 1/2^+$	****	****	****		***				*	***
$N(1520) 3/2^{-}$	****	****	****	***					***	***
$N(1535) 1/2^{-}$	****	****	****	****					**	*
$N(1650) 1/2^{-}$	****	****	****	***			***	**	**	***
$N(1675) 5/2^{-}$	****	****	****	*			*		*	***
$N(1680) 5/2^+$	****	****	****	*	**				***	***
$N(1700) 3/2^{-}$	***	**	***	*			*	*	*	***
$N(1710) 1/2^+$	****	****	****	***		**	****	**	*	**
$N(1720) 3/2^+$	****	****	****	***			**	**	**	*
$N(1860) 5/2^+$	**		**						*	*
$N(1875) 3/2^{-}$	***	***	*			**	***	**		***
$N(1880) 1/2^+$	**	*	*		**		*			
$N(1895) 1/2^{-}$	**	**	*	**			**	*		
$N(1900) 3/2^+$	***	***	**	**		**	***	**	*	**
$N(1990) 7/2^+$	**	**	**					*		
$N(2000) 5/2^+$	**	**	*	**			**	*	**	
$N(2040) 3/2^+$	*		*							
$N(2060) 5/2^{-1}$	**	**	**	*				**		
$N(2100) 1/2^+$	*		*							
$N(2120) 3/2^{-}$	**	**	**				*	*		
$N(2190) 7/2^{-}$	****	***	****			*	**		*	
$N(2220) 9/2^+$	****		****							
$N(2250) 9/2^{-}$	****		****							
$N(2300) 1/2^+$	**		**							
$N(2570) 5/2^{-}$	**		**							
$N(2600) 11/2^{-1}$	***		***							
$N(2700) 13/2^+$	**		**							

- **** Existence is certain, and properties are at least fairly well explored.
- *** Existence is very likely but further confirmation of decay modes is required.
- ** Evidence of existence is only fair.
- Evidence of existence is poor.

Particle Data group 2016

Status as seen in

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Particle	J^P	overall	$N\gamma$	$N\pi$	$\Delta \pi$	$N\sigma$	$N\eta$	ΛK	ΣK	$N\rho$	$N\omega$	$N\eta'$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N	$1/2^{+}$	****										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1440)	$1/2^{+}$	****	****	****	****	***						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1520)	$3/2^{-}$	****	****	****	****	**	****					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1535)	$1/2^{-}$	****	****	****	***	*	****					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1650)	$1/2^{-}$	****	****	****	***	*	****	*				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1675)	$5/2^{-}$	****	****	****	****	***	*	*	*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1680)	$5/2^{+}$	****	****	****	****	***	*	*	*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1700)	$3/2^{-}$	***	**	***	***	*	*			*		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1710)	$1/2^{+}$	****	****	****	*		***	**	*	*	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1720)	$3/2^{+}$	****	****	****	***	*	*	****	*	*	*	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1860)	$5/2^{+}$	**	*	**		*	*					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1875)	$3/2^{-}$	***	**	**	*	**	*	*	*	*	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1880)	$1/2^{+}$	***	**	*	**	*	*	**	**		**	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1895)	$1/2^{-}$	****	****	*	*	*	****	**	**	*	*	****
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1900)	$3/2^{+}$	****	****	**	**	*	*	**	**		*	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1990)	$7/2^{+}$	**	**	**			*	*	*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2000)	$5/2^{+}$	**	**	*	**	*	*				*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2040)	$3/2^{+}$	*		*								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2060)	$5/2^{-}$	***	***	**	*	*	*	*	*	*	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2100)	$1/2^{+}$	***	**	***	**	**	*	*		*	*	**
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2120)	$3/2^{-}$	***	***	**	**	**		**	*		*	*
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2190)	$7/2^{-}$	****	****	****	****	**	*	**	*	*	*	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2220)	$9/2^{+}$	****	**	****			*	*	*			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(2250)	$9/2^{-}$	****	**	****			*	*	*			
$N(2570)$ $5/2^- **$ ** $N(2600)$ $11/2^- ***$ *** $N(2700)$ $13/2^+ **$ **	N(2300)	$1/2^{+}$	**		**								
$N(2600)$ $11/2^- *** *** *** N(2700) 13/2^+ ** **$	N(2570)	$5/2^{-}$	**		**								
$N(2700) 13/2^+ ** **$	N(2600)	$11/2^{-}$	***		***								
	N(2700)	$13/2^+$	**		**								

Existence is certain. ****

**

Existence is very likely. ***

Particle Data group 2018 Evidence of existence is fair.

Evidence of existence is poor.

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Evolving Spectrum

Polarization observables

Polarization observables for vector meson photoproduction:

- Single polarized:
 - **Σ** spin beam asymmetry, T target polarization,
- Double polarized (H, P, F, G, E)
- SDME

Unpolarized cross-section

Why studying photoproduction off the bound proton

- We consider the neutron is on-shell while proton is off-shell.
- The higher the missing momentum is, more Final State Interactions (FSI) events will be present.
- What is the effect of the "offshelness" of the nucleon in the observables?
- When the medium starts to affect the observables? (particularly important to interpret bound neutron data)

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Experimental Layout

100 cm

CEBAF Large Acceptance Spectrometer

DC: Drift Chamber

CC: Cerenkov Counter

SC: Scintillation Counter EC: Electromagnetic Calorimeter

g13 b:

- Real photon. $E_{\gamma} = 1.1 2.3 \text{ GeV}$
- Linearly polarized photons: Coherent Bremsstrahlung

0

40 cm deuteron target

ANGINET CHE

20 TON CRAN

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

Photon Energy

Data Analysis: Event Reconstruction Standard cuts and

100

50

0 L 0

0.2

0.4

0.6

0.8

1

1.2 βγ,

Incident photon identification

Other cuts

Data analysis: Event reconstruction

 $\gamma d \rightarrow \omega$ π^0 $\rightarrow \pi$ $+\pi$ π^0

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

 $\rightarrow \gamma \gamma$

Beam Asymmetry

Preliminary Results This work • quasi free GRAAL (Vegna et al. 2015) • Free proton CLAS (Collins et a..2017) •

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON_DC

Systematic Uncertainty Estimate

Source of uncertainty	$ \mu_{\Delta\Sigma} $	
ϕ_0 offset	10^{-6}	
Photon flux ratio	~ 0.001	
Polarization ratio	< 1%	
Mean polarization	5%	Largest source of uncertainty
Neutral particle cut	0.017	
Incident photon identification	0.001	
Out of time cut	0.000	
z-vertex cut	0.009	
Missing momentum cut	0.021	Compared 0.2 GeV/c with 0.15 GeV/c cut
Dilution factor and $3 - \sigma$ cut	0.010	

Discussion

up!

- The ω channel is relevant in the study of missing resonances predicted constituent quark models
- We calculated the Beam Spin asymmetry for the photoproduced ω mesons off the bounded proton in the deuteron for $E_{\gamma} = 1.1 2.3$ GeV.
- Comparison with previous quasi-free data from GRAAL collaboration (V. Vegna et al.) agrees at low energy bins. The amplitude of the asymmetry reported in this work is larger than GRAAL reported results at $E_{\gamma} = 1.45$ GeV.
- Our results, compared to the free events reported from CLAS collaboration (P. Collins et al. and P. Roy) are in general smaller in amplitude for middle angle range.
- We estimated the systematic uncertainty of the beam asymmetry due to the missing momentum cut as 0.021.
- Possible small FSI background over the quasi-free events.
- There are very interesting proposals to study photoproduction of meson in medium for CLAS12 and Gluex are happening. Very interesting physics coming

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE WASHINGTON UNIVERSITY