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* Boosted Decision Trees (BDT): a supervised-

learning classifier, i.e, the BDT is trained
before can be applied to classification tasks

* Kernel Density Estimator (KDE): a smooth
and continuous method to estimate density
distributions

* Bootstrap: a data-resampling method to
estimate standard deviation, or confidence
interval



Decision Tree introduction:

Ex: Data with 2 features (X,y).

Events are classified as
Translatio>
<Y>

N

background or signal.

Background

Background

* Decision tree 1s similar to “cut” method

* More advanced because it can classify high dimensional (>3) data
simultaneously

 BOOSTED decision trees (better than a single tree) are very efficient
(much better than the cut method)



Boosted Decision Tree (BDT):

* BDT: well-known, well-tested machine learning
algorithm for classification tasks

* Use widely at CERN, incorporated into ROOT][1]

» Standard analysis tool for Hall D GlueX collaboration

* Introduced by Mike Williams (MIT) 1n several talks at
GlueX meetings

* NOT this talk: explain the underlying mechanism of
BDT (theory and implementation)

* This talk: illustration the steps of using BDT for

event selection in g14 analysis

This talk: showing an improved performance over

standard cut method in g14 analysis.

[1] TMVA: toolkit for multivariate data analysis with ROOT



BDT 1n actlon
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gl4 targets have Al wires inside, and cell wall (background to remove)
DON’T select events with LARGE spectator proton momentum - USE CUTS

gl4 experiment had empty target run, used for background subtraction

_________
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f
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Using empty run as background training data

Used simulated yn(ps) = pm~ (ps) reaction as signal training data
Train the trees to develop algorithm for classification

Check for overfitting

Employed the trained trees for classifying signal, and background in
gl4 gold2 target run period

Compare the two methods
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Use to normalize the flux 3252122 ¢+ Background (BG) comes mainly from Al

of the empty target runs 6.136 wires inside the target and KelF target cell.

Select _ *  Empty target runs to obtain BG distribution.
Steps:

4000

3500

3000

25002— Distribution from the IBC 1. Apply cuts to clean up gold2 target data.
2000 (target independent). >Missing mass, missing momentum, coplanary
1500F— angle, and target dimension cuts.
10005_ 1. Run the same analysis on empty target
= data.
500 = A 2. Normalize the IBC flux with full target
T T o Fa— J\;g T J;*; ) data and obtain the scaling factor.
‘ 3. Subtract scaled BG (from empty runs) to

. 12 /32 align yield (Y*?) and anti align yield (Y'?)
Verified for empty run Y'* =Y of full target runs.
Y =1/2%(YV2+Y32)* scaling factor

12 — 1/2 32 = 3/2
YHD o Yfull - YBG YHD - Yfull N YBG

E = (Py X Prarget) X (Yup""? = Yup*'*) /(Y up '/ + Yup*'*)



Procedure: TRAINING, CHECKING ,and APPLYING

* Empty target run as background and MC as signal training data sets
* Provide 11 variables for the BDT to use to develop classification algorithm
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Signal and background training data
Ranking (how important) of variables for this classification task



Procedure: TRAINING, CHECKING ,and APPLYING

* Empty target run as background and MC as signal training data sets
* Provide 11 variables for the BDT to use to develop classification algorithm
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Procedure: TRAINING, CHECKING ,and APPLYING
» Forest of trees (500 trees) developed algorithm to recognize differences between
two classes of data (signal/background)

S/(S+B)=0.130 Decision Tree no.: 0
MissingEnergy= 1.02

S/(S+B)=0.603

S/(S+B)=0.015

MissingMomentum= 202

S/(S+B)=0.706 S/(S+B)=0.188
MissingEnergy=0.995 MissingMomentum= 261
S(S+B)=0.761 S5/(S+B)=0.496 S/(S+B)=0.318

S/(S+B)=0.093

acos_coplanary> 14.8 MissingMinus> 1.11 MissingMinus= 1.01

SN SN SN
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Procedure: TRAINING, CHECKING ,and APPLYING
» Forest of trees (500 trees) developed algorithm to recognize differences between
two classes of data (signal/background)

Sf(S'l' E}=0-41 1 Decision Tree no.: 10
MissingPlus> 1.99
/ \\\
S/(S+B)=0.463 S/(S+B)=0.022
acos_coplanary> 42.4 MissingEnergy= 1.52
S/(S+B)=0.478 S/(S+B)=0.164 S/(S+B)=0.177 _
MissingMinus> 1.22 MissingEnergy> 1.18 acos_coplanary= 10.6 SI(S"'B)_D'DOO
S/(S+B)=0.217 S/S+B8)=0.319 S/(S+B)=0.420
5/(S+B)=0.085 S/{S+B)=0.103

MissingPerp< 192 MissingMinus= 1.16 MissingPlus: 2.15
/ \ / N AR AR

E E o

lth decnsmn tree
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Procedure: TRAINING, CHECKING ,and APPLYING
» Forest of trees (500 trees) developed algorithm to recognize differences between
two classes of data (signal/background)

S5/(S+B)=0.495 Decision Tree no.: 100
MissingEnergy=> 1.53

/ \\\
S/(S+B)=0.501 S f(S+ B) =0.000

acos_coplanary> 84.7

/ \

S/(S+B)=0.502 S/(S+B)=0.302
MissingEnergy> 1.51 MissingPhi>-0.924
/ \ / \ ° °
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Procedure: TRAINING, CHECKING ,and APPLYING

* Each event is given an output between -1 to 1.

* Closer to -1: more likely background, closer to 1: more likely signal
» Performance on test sample is similar on training sample > GOOD

TMVA overtraining check for classifier: BDT

~ TMVA
K=
20 [T signal (test samiple) o . Signal (training sample) '
18 =] Background (test sample) - Background (training sample)

Kolmogorov-Smirnov test: signal (background) probability = 0.935 (0.792)

16
14

(1N) dN / dx

Note: The
true identity
of every event
is known
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BDT response

12



Procedure: TRAINING, CHECKING ,and APPLYING

* Each event is given an output between -1 to 1; A cut at zero is chosen
=24% true background from BG data classified as signal (being selected)
=2 80% true signal from signal data survived the cut at zero

Cut efficiencies and optimal cut value

. = JIMVA,

ISligrlal I(tr.’:llinilngls:=||m|:|>le)I | |

— Signal efficiency - Signal efficiency*purity |

Background efficiency ——— S/#sqri{S+B} ) - Background (training sample)

background) probability = 0.935 (0.792)

ignificance

A

prd

0.8

Selected as
15 signal events

Efficiency (Purity)

0.4

<

0signal-and 5000 backg
he maximum S/ VS+B is
when cutting at -0.0567

B IS B e

-0.2 0 0.2 -0.4 -0.2 0.2
Cut value applied on BDT output BDT response

Rejected as
background events

z -
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Nyl
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U/O-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%
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Event selection using BDT: APPLYING

I MissingMomentum with no cut on BDT response
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Background subtraction vs. BDT:

Ey (GeV) Total Events | Estimated BG | « Using gold2 period data for this check
0.9-1.3 194,528 27,856  l¢ Red points: BDT
0.9-1.3 347,293 32,993 P4 /7- Black points: Background subtraction
1.3-17 73,959 10,126 /|
1.3-17 134,476 12,775¢ |
1.7-2.1 25,149 3,472 / => A big gain in data with a small increase in
1.7-2.1 44,960 4,271 v remaining background
0.9<E,<1.3 GeV
qé ] ; :i:::i:
gk i T
AN I
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1 .7<:EY<2. 1 GeV

—a—— Gold target per.2 BDT

Use B ound subtr ti

* Red points: BDT method

SR S e Black points: Background subtraction

E asymmetry
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Kernel Density Estimator (KDE) introduction:

Histogram and Kernel Density Estimator (red)

>~ =
2 — | Smooth and continuous
a

/

N

1 . —

cos g™ _

1 .

* KDE is a non-parametric method to estimate a probability density distribution

(others is the histogram estimator)[2]

* Every data point X; is “smeared” by a density function with mean at X, (for

example, Gaussian density function)

* KDE then “sums up” these distributions (one at each data point X)) to estimate the

underlying distribution that the X's were sampled from

[2] Density Estimation for statistics and data

analysis by B.W. Silverman



Mathematical Formula for Kernel Density Estimator (KDE):

Example: Given 15 sample ~ 1 X,
points below, divided into 3 frx) =—%i K ( n ) where
bins (see figure); X; €
(0.0,6.0),i € {1,2,3 ...,14,15}

e X 1s the sample data points,

* his the bandwidth (smoothing parameter),

Sample Data Points (X))  K{(x) can be any symmetric density function.
0.73 0.20 * Often, K(x)Z\/%_n e_%(x)z , the normal distribution
0.51 1.24 Ex:
1.90 1.05 . 1 <« 1 (2.5 — X,)?

25)=— ) —exp| -

1.48 2.50 [al2:5) 15h; Vo ( 212 )
3.70 3.30 « f,(x) is estimated using all data points (all X;s).
4.80 5.00 *  K(x) is smooth, so f;(x) is smooth (continuous).
4.50 4.20
5 20 How to pick a good value for h->-> —>back up slide

18



Density

Density

kernel density estimator

0.20
1

2

0.10
1

0.05
|

=255 SEESN
s BTl <1 —
o
T T T | T T T
0 1 2 3 4 5 6

N =15 Bandwidth = 0.9706

kernel density estimator

0.20 0.25 0.30
! | |

0.15
Il

0.10
Il

0.05
1

0.00
|

T T T
2 3 4

0 1 5

6

N =15 Bandwidth = 09706

T 1 x—Xi
frx) =— ?=1K( - )Where

e X 1s the sample data points,

* his the bandwidth (smoothing parameter),

* K(x) can be any symmetric density function.

1
* Often, K(x)=\/%_n e 20’ , the normal distribution

Ex:
. 1 1 (2.5 — X;)?
fr(25)=— ) ——exp (— )

2h?
« f,(x) is estimated using all data points (all X;s).
*  K(x) is smooth, so f4(x) is smooth (continuous).

* h s strongly influenced on the resulting estimate,

\ — 3100 large h obscures underlying structure
too small h results in many fluctuations

19



Histogram and KDE for gold2, left is anti (Y!?), right is para (Y??)

. Anti = \%Para
. )
. ;{‘\QAQQ _
T
. . COS Qcmn_ CcoS Hcmn_
Using histogram
E 1 ng''-ng" 1 I
(x B,-) = Dol ng ing 1 where ng. = # events in bin B; for para data.
J
Using KDE
T £ L
1L nnfu=-n fIn
E (x ) — where n'! = total # events for para data, and

pol n*'Tf(x) i+ n"f ()
L f)pdx =12 f(x)dx =1
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E asymmetry

0.9 GeV<E,<1.0 GeV; gold2 run period

1.0

0.5

0.0

-0.5

-1.0

gold2 period using GAUSSIAN KERMNEL

from KDE method
from histogram method

.0

21



Measure value of X n times

Estimate f(X)=mean (X))

Need to estimate uncertainty

*  Draw new samples from the true
distribution, i.e, repeat the

experiment m times.

* [Estimate uncertainty from the m

samples

[3] Probability and Statistics by DeGroot- Schervish

CAN’T measure again, then
sampling the n X; with
replacement m’ times.

Draw new samples from an
approximate distribution (the

data obtained)

Estimate uncertainty by from the

m’ samples

=> this is the bootstrap method

22



Plotting E asymmetry

gold2 period using GAUSSILAN KERMNEL
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E asymmetry
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g id? pediod using GAUSSIAN KERMNEL
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E asymmery
0.0

0.5

.

-15

(s
=

0.9 GeV<E <1.0 GeV; gold2 run period

E curve from KDE method agrees
well with histogram method for two
different sets of binning.

Histogram: compromise between a
more precise measurement (small
uncertainty) or a better
representation of data (more bins).

KDE does NOT have that issue,
better choice for low statistics
data, still has bias near
boundaries.

KDE makes plotting a continuous

error, or confidence level band
possible.

23



* Study and improve MC simulation for g14 run
« Use BDT for KA and KX selections

* Learn and implement bias reduction techniques for bounded

data (cosine near £1)

 [earn more advanced KDE methods to estimate low statistic

data better
* Apply these new tools to low statistics KA and KX° data

24
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Decision Tree introduction: training

Goal: 7o improve data “purity” after each node splitting using information entropy

nsig lo nsig . nbg log nbg

Entropy(nsi n )———
g’ '*bg
Ntotal Ntotal Ntotal Ntotal

Pick a variable V; and its cut value v from a set of
variables to maximize the following formula:

nAj

Gain(ns;ig, npg, Vi ) = Entropy(nsig, npg) — z Entropy (nigig,n%pg)

n
AA, total

where A, and A, are two sets of events separated by v (one set with V.<v, the other
with V, >v),

—> =D Pick the cut value v of variable V; such that the percentage of
signal or background events after splitting is larger than the original
percentages.

- eRepeat for all Vs and select one V' with maximum gain

26



Decision Tree introduction: training

* Good: easy to understand, straight forward implementation, and no event
removed.

* Bad: the tree can perfectly classify training data if given enough
splittings; overfitting always occurs = highly sensitive to statistical
fluctuation.

* Solution: limit amount of splittings, and BOOSTing

Boosting means using decision tree multiple times on reweighted training
data to improve performance

-> Build a forest of many different decision trees

27



BOOSTED Decision Tree introduction:

Boosting: run decision tree multiple times on reweighted training data
->-> Build a forest of many different decision trees

Trees

1st 1/n

>
Average
B | cvont output
Correctly classified
ond 1/ - as Sig or Bg, ) Aw& 2nd event output
il W2 weight decreases

Average

3rd 1/n for every event, ﬂ 31 event output
i . Background : -1 .
E Signal :+1
q>) [ ] [ ] [ ] [ ] [ ]
i Average all m scores

] for each event
Incorrectly classified " Coutut
A 4 weight increases

I3t tree 2nd tree mt tree

* Each new tree is built differently due to having a new set of weights for all events

* Each new tree focuses more on wrongly classified events by previous trees

28



Mathematical Formula for Histogram Density Estimator:

Example: Given 15 sample points below,
divided into 3 bins (see figure); X; €

(0.0,6.0),i € {1,2,3 ..., 14,15}

Sample Data Points (X))
0.73 0.20
0.51 1.24
1.90 1.05
1.48 2.50
3.70 3.30
4.80 5.00
4.50 4.20
5.80

histogram of 15 sample points

020
J

015
|

Bin 1 Bin 2 Bin 3

Densiy

010
|

006
|

000
|

Draw back of histogram method (more severe with low-statistics data):

Sensitive to bin width (bias toward data points closed to bin edges).

Use only partial data for estimation. i.e., to estimate f(x) with
X € Bj use only data points X; € B;.

f 4(x) is a discontinuous function (step function).

Define: B; = (xo+ (j — 1d, x, + jd)
where X, 1s the origin, and d is bin width.
A 1 :
fd(x) = d ?:1 Z]#ﬁns 1(XiEBj)1(xEBj)

where X, is the sample data points. f 4(x) is constant for all x in a same bin.

X; : recorded sample data points; x: estimating points 29



Consider:

frn(x) =37 n—lh K (x;xi) , f (x) = true density function
Define:

Ly = j dx(Fn(x) — F(0))? = f dx(Fu(x))2—2 j dx(Fr(Of () + f dx(F(0)2 = 0

L= jdx(fh(x))Z—ZJdx(fh(x)f(x)) > —fdx(f(x))zz constant

Q
do e

SO R ENC )

l

D ik (B 2 const
— *
l — A > —const (x)

- Find h which minimizes (*)

Advantage

non-parametric method to estimate the smoothing parameter h
Disadvantage: computing intensive n’ operations

if there are many pairs of X, X, with X;~ X, then L, — —oo,as h — 0;
tends to pick small h (undersmooth)
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E asymmetry
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gold2 period using GAUSSIAN KERNEL

cosle.)
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E asymmetry
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goldZ period using GAUSSIAN KERNEL
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