
g14 analysis using new statistical 

data analysis methods  

Dao Ho 

03/07/2014 



Outline 

• Boosted Decision Trees (BDT): a supervised-

learning classifier, i.e, the BDT is trained 

before can be applied to classification tasks 

• Kernel Density Estimator (KDE): a smooth 

and continuous method to estimate density 

distributions  

• Bootstrap: a data-resampling method to 

estimate standard deviation, or confidence 

interval     
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Decision Tree introduction: 

Signal 
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Ex: Data with 2 features (x,y). 

Events are classified as 

background or signal.   

• Decision tree is similar to “cut” method 

• More advanced because it can classify high dimensional (>3) data 

simultaneously 

• BOOSTED decision trees (better than a single tree) are very efficient 

(much better than the cut method) 
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Background 

 Translation 
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Boosted Decision Tree (BDT): 

• BDT: well-known, well-tested machine learning 

algorithm for classification tasks 

• Use widely at CERN, incorporated into ROOT[1] 

• Standard analysis tool for Hall D GlueX collaboration 

• Introduced by Mike Williams (MIT) in several talks at 

GlueX meetings 

  

• NOT this talk: explain the underlying mechanism of 

BDT (theory and implementation) 

• This talk: illustration the steps of using BDT for 

event selection in g14 analysis 

• This talk: showing an improved performance over 

standard cut method in g14 analysis.      

 

[1] TMVA: toolkit for multivariate data analysis with ROOT 



BDT in action: 
 Background Subtraction: E asymmetry for  𝜸𝒏(𝒑𝒔) → 𝒑𝝅−(𝒑𝒔)   reaction 

• g14 targets have Al wires inside, and cell wall (background to remove) 

• DON’T select events with LARGE spectator proton momentum  USE CUTS 

• g14 experiment had empty target run, used for background subtraction 

 BDT:  E asymmetry for  𝜸𝒏(𝒑𝒔) → 𝒑𝝅−(𝒑𝒔)    reaction 

• Using empty run as background training data 

• Used simulated 𝛾𝑛(𝑝𝑠) → 𝑝𝜋−(𝑝𝑠) reaction as signal training data 

• Train the trees to develop algorithm for classification  

• Check for overfitting 

• Employed the trained trees for classifying signal, and background in  

      g14 gold2 target run period  

 Compare the two methods 
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Use to normalize the flux  

of the empty target runs 

Distribution from the IBC  

(target independent). 

Select 

z-component of interaction vertex  

• Background (BG) comes mainly from Al 

wires inside the target and KelF target cell.  

• Empty target runs to obtain BG distribution.  

Steps: 

1. Apply cuts to clean up gold2 target data. 

Missing mass, missing momentum, coplanary 

angle,  and target dimension cuts.  

1. Run the same analysis on empty target 

data. 

2. Normalize the IBC flux with full target 

data and obtain the scaling factor. 

3.  Subtract scaled BG (from empty runs) to 

align yield (Y3/2) and anti align yield (Y1/2) 

of full target runs. 

  

Verified for empty run Y1/2 ≈Y3/2 

 

YBG=1/2*(Y1/2+Y3/2)* scaling factor 
 

YHD
1/2  =    Yfull

1/2     -   YBG                    YHD
3/2  =    Yfull

3/2     -   YBG 

𝑬 = (𝑷𝜸 × 𝑷𝒕𝒂𝒓𝒈𝒆𝒕)
−𝟏× (𝒀𝑯𝑫

𝟏/𝟐 − 𝒀𝑯𝑫
𝟑/𝟐) (𝒀𝑯𝑫

𝟏/𝟐 + 𝒀𝑯𝑫
𝟑/𝟐)  

Background subtraction: 
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Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

 

• Empty target run as background and MC as signal training data sets 

• Provide 11 variables for the BDT to use to develop classification algorithm  

1st  

6th  

2nd  

9th  

10th  

5th  

Signal and background training data 

Ranking (how important) of variables for this classification task 
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Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

 

• Empty target run as background and MC as signal training data sets 

• Provide 11 variables for the BDT to use to develop classification algorithm  

4th  8th  11th  

3rd  7th  

Signal and background training data 

Ranking (how important) of variables for this classification task 
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Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

• Forest of trees (500 trees) developed algorithm to recognize differences between 

two classes of data (signal/background) 

1st decision tree 



10 

Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

• Forest of trees (500 trees) developed algorithm to recognize differences between 

two classes of data (signal/background) 

11th decision tree 
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Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

• Forest of trees (500 trees) developed algorithm to recognize differences between 

two classes of data (signal/background) 

 101th decision tree 
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Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

• Each event is given an output between -1 to 1.  

• Closer to -1: more likely background, closer to 1: more likely signal 

• Performance on test sample is similar on training sample GOOD   

Note: The 

true identity 

of every event 

is known  
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Event selection using BDT: 

Procedure: TRAINING, CHECKING ,and APPLYING 

• Each event is given an output between -1 to 1; A cut at zero is chosen 

4% true background from BG data classified as signal (being selected)    

80% true signal from signal data survived the cut at zero 

Selected as 

signal events 

Rejected as 

background events 



Event selection using BDT: APPLYING 
 

All 

Selected 

Rejected 

All 

Selected  
(no cut on target) 

Rejected 

All 

Selected 
(no cut on target) 

Rejected 

Final selection: only target region 14 
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 MM2(p𝝅 −) |precoil| 

BDT reject most 

background 

  Al   Al   Al   Al 

 KelF 

Δ 

ps 

 z-component of interaction vertex; this variable NOT used in training the BDT 



Background subtraction vs. BDT: 

• Using gold2 period data for this check 

• Red points: BDT  

• Black points: Background subtraction  

• BDT total events≈1.80 cut method total  

• BDT remained BG ≈1.18 cut method BG 

A big gain in data with a small increase in 

remaining background  
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cos(θCM
π) 

Eγ (GeV) Total Events Estimated BG 

0.9-1.3 194,528 27,856 

0.9-1.3 347,293 32,993 

1.3-1.7 73,959 10,126 

1.3-1.7 134,476 12,775 

1.7-2.1 25,149 3,472 

1.7-2.1 44,960 4,271 



Background subtraction vs. BDT: 

16 cos(θCM
π) 

• Red points: BDT method 

• Black points: Background subtraction  
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• Red points: BDT method 

• Black points: Background subtraction  



Kernel Density Estimator (KDE) introduction: 

• KDE is a non-parametric method to estimate a probability density distribution 

(others is the histogram estimator)[2] 

 

• Every data point Xi is “smeared” by a density function with mean at Xi (for 

example, Gaussian density function) 

 

• KDE then “sums up” these distributions (one at each data point Xi) to estimate the 

underlying distribution that the Xis were sampled from 
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cos 𝜃𝑐𝑚
𝜋− 

Histogram and Kernel Density Estimator (red) 
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Smooth and continuous 

[2] Density Estimation for statistics and data 

analysis by B.W. Silverman 



Mathematical Formula for Kernel Density Estimator (KDE): 

𝒇 𝒉 𝒙 =
𝟏

𝒏𝒉
 𝑲

𝒙−𝑿𝒊

𝒉
𝒏
𝒊=𝟏  where  

• Xi is the sample data points,  

• h is the bandwidth (smoothing parameter),  

• K(x) can be any symmetric density function.  

• Often, K(x)=
1

2𝜋
𝑒−

1

2
𝑥 2

 , the normal distribution  

Ex:    

𝑓 𝑕 2.5 =
1

15𝑕
 

1

2𝜋
𝑒𝑥𝑝 −

2.5 − 𝑋𝑖
2

2𝑕2

15

𝑖=1

 

• 𝑓 𝑑 𝑥  is estimated using all data points (all Xis).  

• K(x) is smooth, so 𝑓 𝑑 𝑥  is smooth (continuous).  
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Sample Data Points (Xi) 

0.73 0.20 

0.51 1.24 

1.90 1.05 

1.48 2.50 

3.70 3.30 

4.80 5.00 

4.50 4.20 

5.80 

Example: Given 15 sample 

points below, divided into 3 

bins (see figure); 𝑋𝑖 ∈
0.0,6.0 , 𝑖 ∈ *1,2,3 … , 14,15+  

  

How to pick a good value for h back up slide 



Mathematical Formula for Kernel Density Estimator (KDE): 

𝒇 𝒉 𝒙 =
𝟏

𝒏𝒉
 𝑲

𝒙−𝑿𝒊

𝒉
𝒏
𝒊=𝟏  where  

• Xi is the sample data points,  

• h is the bandwidth (smoothing parameter),  

• K(x) can be any symmetric density function.  

• Often, K(x)=
1

2𝜋
𝑒−

1

2
𝑥 2

 , the normal distribution  

Ex:    

𝑓 𝑕 2.5 =
1

15𝑕
 

1

2𝜋
𝑒𝑥𝑝 −

2.5 − 𝑋𝑖
2

2𝑕2

15

𝑖=1

 

• 𝑓 𝑑 𝑥  is estimated using all data points (all Xis).  

• K(x) is smooth, so 𝑓 𝑑 𝑥  is smooth (continuous).  

• h is strongly influenced on the resulting estimate, 

  too large h obscures underlying structure 

  too small h results in many fluctuations 
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Using KDE to “plot” E asymmetry: 

Histogram and KDE for gold2, left is anti (Y1/2), right is para (Y3/2)  

Anti Para 

Using histogram 

𝐸 𝑥𝐵
𝑗

=
1

𝑝𝑜𝑙

𝑛𝐵
𝑗

↓↑−𝑛𝐵
𝑗

↑↑

𝑛𝐵
𝑗

↓↑+𝑛𝐵
𝑗

↑↑  where 𝑛𝐵𝑗

↑↑ = # events in bin Bj for para data. 

Using KDE 
 

𝐸 𝑥 =
1

𝑝𝑜𝑙

𝑛↓↑𝑓 (𝑥)↓↑−  𝑛↑↑𝑓 (𝑥)↑↑

𝑛↓↑𝑓 (𝑥)↓↑+ 𝑛↑↑𝑓 (𝑥)↑↑
  where 𝑛↑↑ = total # events for para data, and  

     𝑓 (𝑥)↓↑𝑑𝑥 =1

−1
  𝑓 (𝑥)↑↑𝑑𝑥 =1

−1
 1 

 

cos 𝜃𝑐𝑚
𝜋− cos 𝜃𝑐𝑚

𝜋− 
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Using KDE to “plot” E asymmetry: 

from KDE method 

from histogram method 

0.9 GeV<Eγ<1.0 GeV; gold2 run period 



Bootstrap short introduction [3]  

• Draw new samples from the true 

distribution, i.e, repeat the 

experiment m times.  

• Estimate uncertainty from the m 

samples 

 

• CAN’T measure again, then 

sampling the n Xi with 

replacement m′ times.  

• Draw new samples from an 

approximate distribution (the 

data obtained) 

• Estimate uncertainty by from the 

m′ samples 

this is the bootstrap method 
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Measure value of X n times 

Estimate f(X)=mean f(Xi) 

Need to estimate uncertainty 

[3] Probability and Statistics by DeGroot- Schervish 



Plotting E asymmetry 
• E curve from KDE method agrees 

well with histogram method for two 

different sets of binning.  

 

• Histogram: compromise between a 

more precise measurement (small 

uncertainty) or a better 

representation of data (more bins). 

 

• KDE does NOT have that issue, 

better choice for low statistics 

data, still has bias near 

boundaries. 

  

• KDE makes plotting a continuous 

error, or confidence level band 

possible.    

 

 

23 0.9 GeV<Eγ<1.0 GeV; gold2 run period 



Future Works: 

• Study and improve MC simulation for g14 run 

• Use BDT for K0Λ and K0Σ0 selections  

• Learn and implement bias reduction techniques for bounded 

data (cosine near ±1) 

• Learn more advanced KDE methods to estimate low statistic 

data better  

• Apply these new tools to low statistics K0Λ and K0Σ0 data 
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Back Up 
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Decision Tree introduction: training 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑛𝑠𝑖𝑔, 𝑛𝑏𝑔 = −
𝑛𝑠𝑖𝑔

𝑛𝑡𝑜𝑡𝑎𝑙
𝑙𝑜𝑔

𝑛𝑠𝑖𝑔

𝑛𝑡𝑜𝑡𝑎𝑙
−

𝑛𝑏𝑔

𝑛𝑡𝑜𝑡𝑎𝑙
𝑙𝑜𝑔

𝑛𝑏𝑔

𝑛𝑡𝑜𝑡𝑎𝑙
 

𝐺𝑎𝑖𝑛 𝑛𝑠𝑖𝑔, 𝑛𝑏𝑔, 𝑉𝑖  = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑛𝑠𝑖𝑔, 𝑛𝑏𝑔 −  
𝑛𝐴𝑗

𝑛𝑡𝑜𝑡𝑎𝑙
𝐸𝑛𝑡𝑟𝑜𝑝𝑦

𝐴1,𝐴2

(𝑛𝐴
𝑗𝑠𝑖𝑔, 𝑛𝐴

𝑗𝑏𝑔) 

Goal: To improve data “purity” after each node splitting using information entropy   

Pick a variable Vi and its cut value v from a set of 

variables to maximize the following formula: 

where A1 and A2 are two sets of events separated by v (one set with Vi<v, the other 

with Vi >v),  

Pick the cut value v of variable Vi such that the percentage of 

signal or background events after splitting is larger than the original 

percentages. 

Repeat for all Vs and select one V with maximum gain    
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 Decision Tree introduction: training  
• Good: easy to understand, straight forward implementation, and  no event 

removed. 

 

• Bad: the tree can perfectly classify training data if given enough 

splittings; overfitting always occurs  highly sensitive to statistical 

fluctuation.  

 

 

• Solution: limit amount of splittings, and BOOSTing 

 

Boosting means using decision tree multiple times on reweighted training 

data to improve performance  

 Build a forest of many different decision trees  
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BOOSTED Decision Tree introduction: 
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. 

. 

. 

. 

  1st tree 

      nth  

       1st  

      2nd  

      3rd  

1/n 

1/n 

1/n 

1/n 

. 

. 

. 

. 

 w1  

  w2 

 w3 

wn 

  2nd tree 

Correctly classified 

as Sig or Bg,  

weight decreases 

Incorrectly classified 

as Sig or Bg,  

weight increases 

.     .      .     .     .    
  

. 

. 

. 

. 

  w’2 

 w’3 

w’n 

 w’1 

    mth tree 

for every event, 

Background : -1  

Signal           : +1 

Average all m scores 

for each event 

1st event output 

Boosting: run decision tree multiple times on reweighted training data  

                  Build a forest of many different decision trees  

2nd event output 

3rd event output 

nth event output 

  E
v
en

ts
 

Trees 

• Each new tree  is built differently due to having a new set of weights for all events 

 

• Each new tree focuses more on wrongly classified events by previous trees   

 Average 

 Average 

  Average 



Sample Data Points (Xi) 

0.73 0.20 

0.51 1.24 

1.90 1.05 

1.48 2.50 

3.70 3.30 

4.80 5.00 

4.50 4.20 

5.80 

Example: Given 15 sample points below, 

divided into 3 bins (see figure); 𝑋𝑖 ∈
0.0,6.0 , 𝑖 ∈ *1,2,3 … , 14,15+  

  

Mathematical Formula for Histogram Density Estimator: 

Xi : recorded sample data points;  x: estimating points 

Bin 1 Bin 3 Bin 2 

Draw back of histogram method (more severe with low-statistics data):  

• Sensitive to bin width (bias toward data points closed to bin edges).  

• Use only partial data for estimation. i.e., to estimate f(x) with 

𝒙 ∈ 𝑩𝒋 
 use only data points 𝑿𝒊 ∈ 𝑩𝒋. 

• 𝒇 𝒅 𝒙  is a discontinuous function (step function).  

 

Define: 𝐵𝑗 = 𝑥0 + 𝑗 − 1 𝑑, 𝑥0 + 𝑗𝑑   

where x0 is the origin, and d is bin width. 

𝑓 𝑑 𝑥 =
1

𝑛𝑑
   1 𝑋𝑖∈𝐵𝑗 1 𝑥∈𝐵𝑗

#𝑏𝑖𝑛𝑠
𝑗=1

𝑛
𝑖=1   

where Xi is the sample data points. 𝑓 𝑑 𝑥  is constant for all x in a same bin.  
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Using Least Square Cross Validation to pick h: 

𝑓 𝑕 𝑥 =  
1

𝑛𝑕
𝐾

𝑥−𝑋𝑖

𝑕
𝑛
𝑖 , 𝑓 𝑥 ≡ true density function 

 

 

𝑳𝒉 =  𝒅𝒙(𝒇 𝒉 𝒙 − 𝒇 𝒙 )𝟐 =  𝒅𝒙(𝒇 𝒉 𝒙 )𝟐−𝟐  𝒅𝒙(𝒇 𝒉 𝒙 𝒇 𝒙 ) +  𝒅𝒙(𝒇 𝒙 )𝟐 ≥ 𝟎 

 

→ 𝑳 𝒉 =  𝒅𝒙(𝒇 𝒉 𝒙 )𝟐−𝟐  𝒅𝒙 𝒇 𝒉 𝒙 𝒇 𝒙 ≥ −  𝒅𝒙(𝒇 𝒙 )𝟐= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 

 

→ 𝐿 𝑕 ≈   
1

𝑛𝑕 2

𝑛

𝑗

𝑛

𝑖

 𝐾
𝑥 − 𝑋𝑖

𝑕
𝐾

𝑥 − 𝑋𝑗

𝑕
𝑑𝑥 −

2

𝑛 − 1
  

1

𝑛𝑕
𝐾

𝑋𝑘 − 𝑋𝑙

𝑕

𝑛

𝑙

𝑛

𝑘≠𝑙

≥ − 𝑐𝑜𝑛𝑠𝑡 (∗) 

 

Find h which minimizes (*)  

Consider:  

Advantage    :  non-parametric method to estimate the smoothing parameter h 

Disadvantage:  computing intensive n2 operations 

                         if there are many pairs of Xi, Xj with Xi ≈ Xj, then 𝐿 𝑕 → −∞, 𝑎𝑠 𝑕 → 0;  

                         tends to pick small h (undersmooth)  

Define: 
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