Selection on Φ_{HEL} angle

PARITY CHECK OF SOLUTIONS OF ROBERTS' SYSTEM OF EQUATIONS

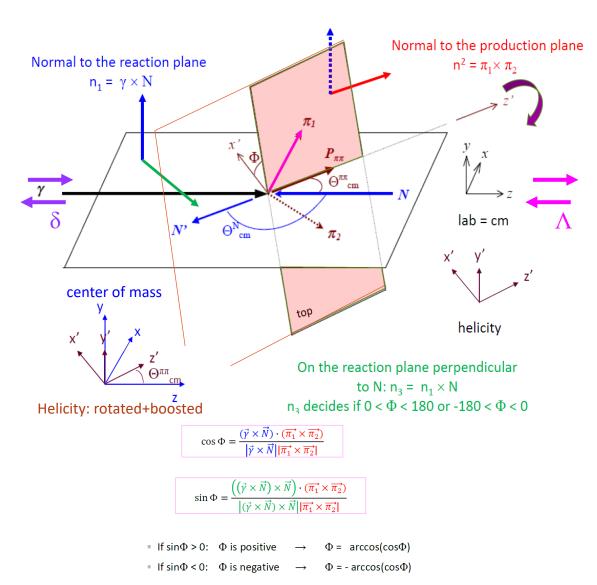
- Let's go back to the expressions for the solutions of the system of four equations coming from different helicities/spin target polarizations
- The only way to provide the correct negative parity to P_z is to explicit a dependence on ϕ_{hel} angle: $P_z \rightarrow -P_z$ for negative ϕ_{hel}
- I^o is ok as it is: there is direct dependence only on beam helicity
 - If helicities are swapped, the sign of δ is reversed as well: no change
- $P_z \rightarrow -P_z$ for negative ϕ_{hel} only if $\Lambda_z \rightarrow -\Lambda_z$
 - Can an explanation be found?

$$I_{\odot} = \frac{\frac{N_{1}^{\rightarrow \Rightarrow} - N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}} + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathscr{L}_{eff1}}{\mathscr{L}_{eff2}} \cdot \frac{N_{2}^{\rightarrow \leftarrow} - N_{2}^{\leftarrow \leftarrow}}{\delta_{\odot 2}}}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathscr{L}_{eff1}}{\mathscr{L}_{eff2}}}{(N_{2}^{\rightarrow \leftarrow} + N_{2}^{\leftarrow \leftarrow})}}$$

$$P_{z}^{\odot} = \frac{1}{\Lambda_{z2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow} - N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}} - \frac{\mathscr{L}_{eff1}}{\mathscr{L}_{eff2}} \cdot \frac{N_{2}^{\rightarrow \leftarrow} - N_{2}^{\leftarrow \leftarrow}}{\delta_{\odot 2}}}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathscr{L}_{eff1}}{\mathscr{L}_{eff2}} (N_{2}^{\rightarrow \leftarrow} + N_{2}^{\leftarrow \leftarrow})}$$

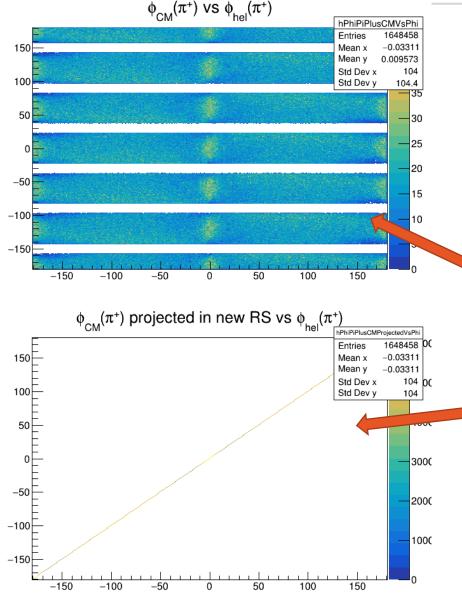
$$P_{z} = \frac{1}{\Lambda_{z2}} \cdot \frac{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) - \frac{\mathscr{L}_{eff1}}{\mathscr{L}_{eff2}} \cdot (N_{2}^{\rightarrow \leftarrow} + N_{2}^{\leftarrow \leftarrow})}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathscr{L}_{eff1}}{\mathscr{L}_{eff2}} (N_{2}^{\rightarrow \leftarrow} + N_{2}^{\leftarrow \leftarrow})}$$

OVER AND AGAIN ON THE EVENT TOPOLOGY



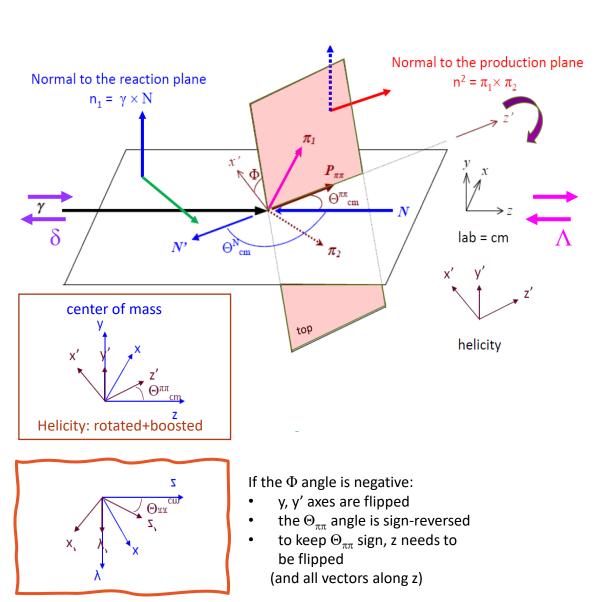
- Consider the reaction c.m. as Roberts does
- The pink plane contains the three vectors π_1 , π_2 and $P_{\pi\pi}$ (- $P_{N'}$)
- Φ is the angle between the white and the pink plane
- If the pions are boosted in the dipion rest frame, they are back-to-back but still lie on the pink plane, so φ_{hel} defined in the helicity frame is the same as Φ defined in c.m. frame, in the new x'y'z' axes system
 - y and y' coincide in the two RS
- The A vector, as a spin, is not subject to Lorentz transformations from lab to c.m.
 - Opposite/same verse to the direction of the proton in the center of mass

The c.m. and Φ helicity angles are the same



- Use of phase space montecarlo (here modulated with the apparatus acceptance)
- The φ angle of the π⁺ momentum is compared as defined in different reference systems
 - π⁺ CM momentum defined in xyz reference system vs π⁺ momentum in helicity reference system x'y'z' (rotated + boosted)
 - π^+ CM momentum rotated in new x'y'z' vs π^+ momentum in helicity reference system
 - The φ angle in the same for boosted/no-boosted vectors

OVER AND AGAIN ON THE EVENT TOPOLOGY



Positive Φ :

- π_1 emitted above the reaction plane
- Positive y, y'
- A positive/negative (constant sign in a dataset)

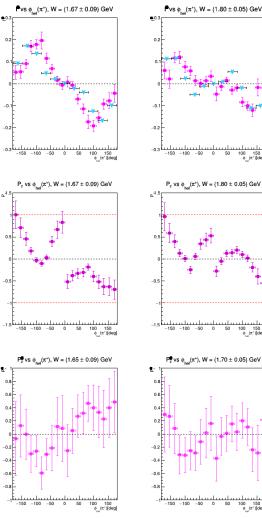
Negative Φ :

- π_1 emitted below the reaction plane
- Negative y, y'
- A negative/positive: the sign is reversed in the frame whose z is aligned along the dipion flight direction

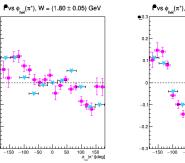
 If this is correct, if Φ is negative one needs to flip the sign of the target polarization

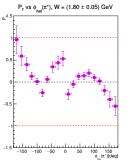
- The same holds for the beam helicities
- This means to swap set1/set2 in the formulas (taking care of proper normalization factors)
- P_z gets "by construction" an odd symmetry with respect to Φ

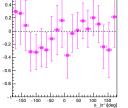
SOLUTIONS WITH IMPOSED SYMMETRY

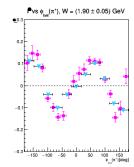


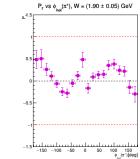
٤.

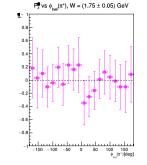


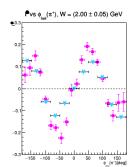












 $P_z vs \phi_{hol}(\pi^+), W = (2.00 \pm 0.05) \text{ GeV}$

المصابيتينا بتتنا بتتنا بتتنا تتبيا

 $P_z^{\bullet} vs \phi_{hal}(\pi^+), W = (1.80 \pm 0.05) \text{ GeV}$

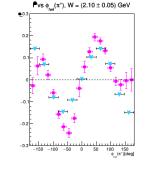
150 -100 -50 0 50 100 150

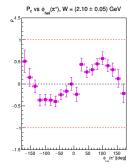
50

-150 -100 -50 0

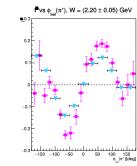
100 150 φ_{[tel}(π*)[deg]

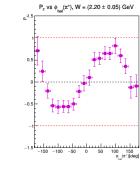
100 150 φ_{ini}(π*)[deg]

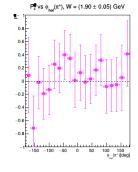












6

STILL TO BE UNDERSTOOD

- P_z is odd but shows a discontinuity at 0 deg, which however reduces with the energy increase
 - The trend becomes very smooth in the last bin
 - Maybe it's normal? At 0 deg, P_z should be zero (since it is odd)
 - Can't we ask Roberts if this makes sense?
 - Try to stagger the angular bins to include zero as bin center? (now it is on the edge of two consecutive bins)
- P[•]_z?
 - The reversal of data sets, which implies $\delta \to -\delta$ and $\Lambda_z \to -\Lambda_z$, should provide a flip sign as well
 - But the function is basically zero within the big errors, so the significance of the shape is relatively small