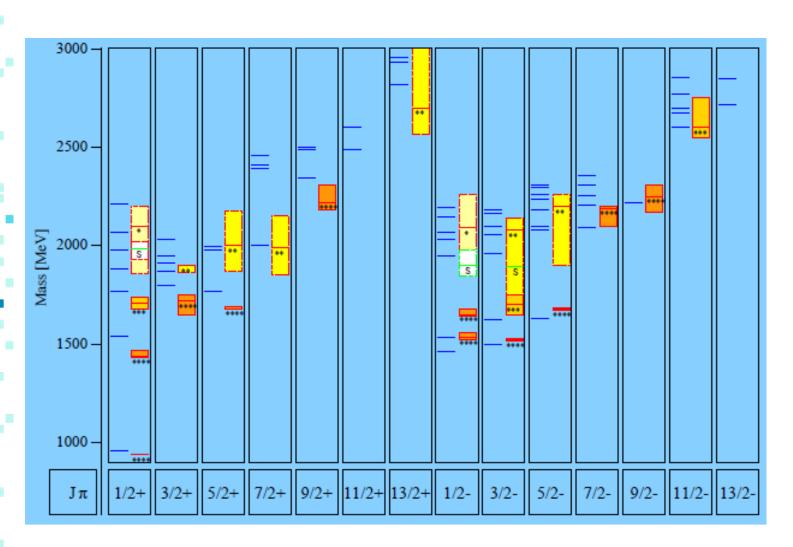


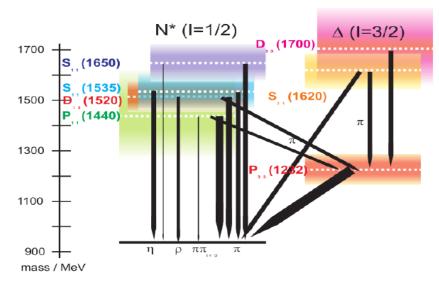
HADRON2023, Genova, Italy - June 5, 2023

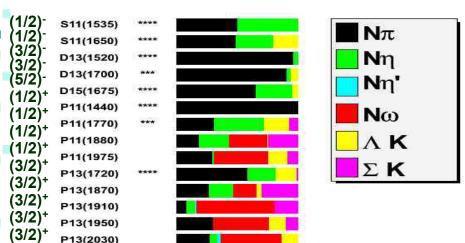
Exclusive $\pi^+\pi^-$ photoproduction with polarized target and beam at CLAS


Alessandra Filippi INFN Torino, Italy

On behalf of the CLAS Collaboration

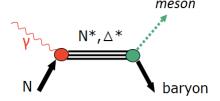
The light baryon (N*, △) spectrum in the Constituent Quark Model

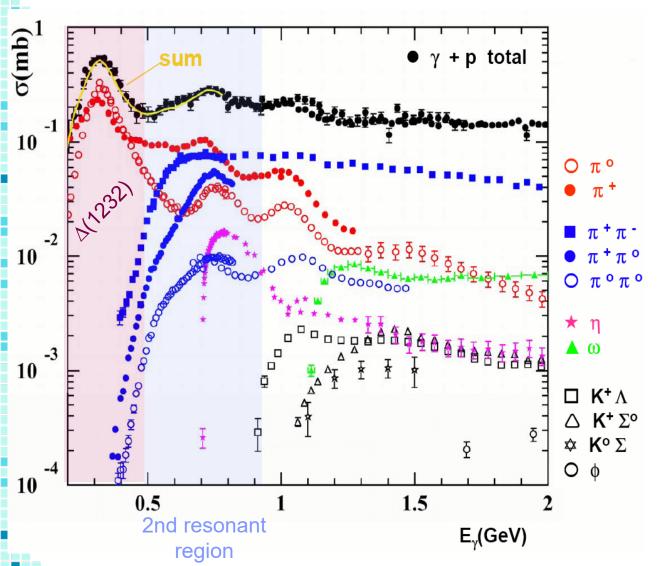



Quarks confined into colorless hadrons

- Description by first principleQCD and constituent QuarkModels:
 - Blue lines: expected states
 - Yellow/orange boxes: observations

The light baryon spectrum: experimental status




F15(1680) F15(1980)

- Lowest lying N* and Δ * resonances
 - 1.3-2 GeV mass range: second resonant region
 - Overlapping states in the same mass region
 - Broad widths (short lifetimes)
 - Shared decay modes
- Most of the available information from pion/kaon beams experiments
 - Missing states: too small couplings with mesons
- How to disentangle each signal and spot missing resonances?
 - Difficult task if based only on the measurement of cross-sections
 - Use new approaches: analysis of polarization observables (additional information: spin)
 - Perform precision measurements in as many reactions as possible

N^*/Δ^* in photoproduction reactions

Photonuclear cross sections

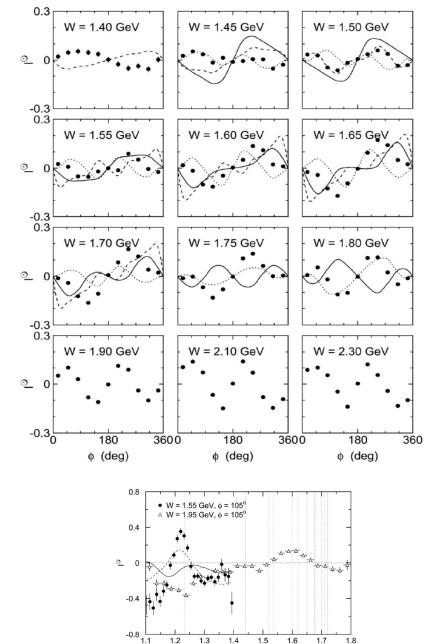
- Photon induced reaction could favor the formation of missing resonances which might couple strongly to the γN vertex
- γ reactions not studied extensively in the past - lack of good enough (energy/intensity) photon beams
- Dominant contributions to the "second resonant region": double-pion and η channels
 - Double-pion photoproduction: good tool to investigate this mass region

Photoproduction of $\pi^+\pi^-$ pairs from protons

with circularly polarized beam

S. Strauch et al. (CLAS) PLR95 (2005), 162003

CLAS data: 1.35 < W < 2.30 GeV

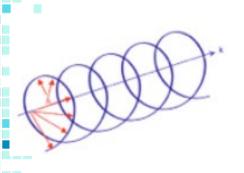

Missing resonances predicted to lie in the region W > 1.8 GeV

Circularly polarized photon beam, no polarization specified for target and recoil proton

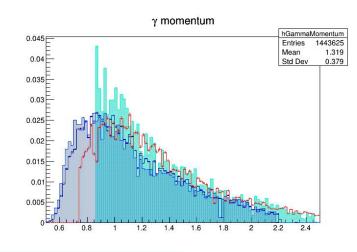
First measurement of beam-helicity asymmetry distributions as a function of the helicity angle:

$$I^{\odot} = \frac{1}{P_{\gamma}} \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}}$$

- Odd trend in all W sub-ranges
- Compared with models based on electroproduction of doublecharged pions including a set of quasi-two body intermediate states (Mokeev et al.):
 - $\pi \Delta$, ρN , $\pi N(1520)$, $\pi N(1680)$ + contributions from $\Delta(1600)$, N(1700), N(1710), N(1720)
 - The agreement is not satisfactory, calls for a more detailed description
 - The I^{\odot} observable is critically sensitive to interferences

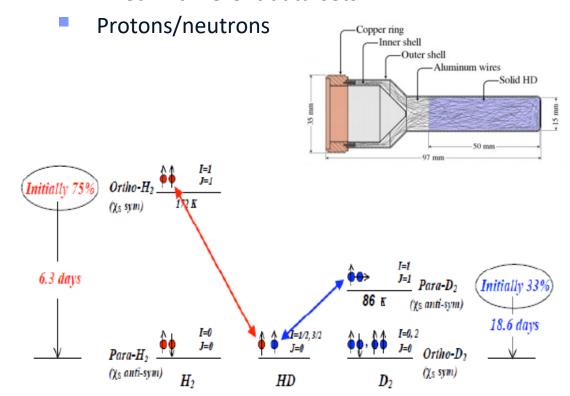


Experimental method – polarized beam and target

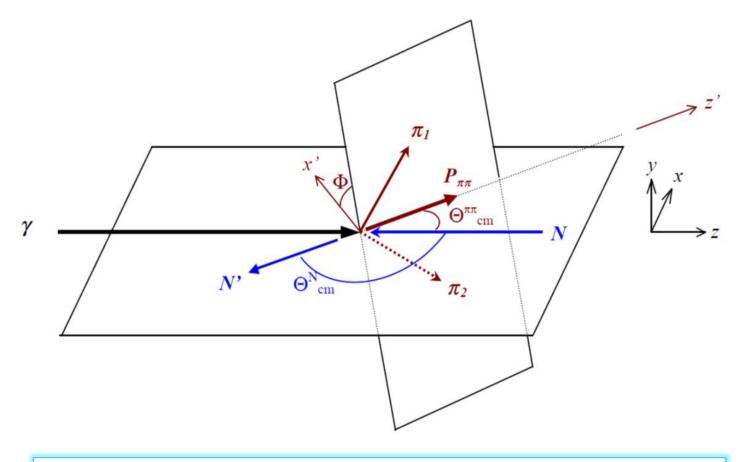

CLAS-g14 data taking (2011-2012): *circularly polarized* photon beam with momentum up to 2.5 GeV/c interacting on a cryogenic HD *longitudinally* polarized target

Beam: circularly polarized photons by bremsstrahlung from a longitudinally polarized electron beam (>85%) through a gold foil radiator

- Circular: \uparrow/\downarrow (960 Hz flip frequency)
- Energy dependent γ polarization



$$x = \frac{E_{\gamma}}{E_{beam}}$$



$$\delta_{\odot} = P_{el} \frac{4x - x^2}{4 - 4x + 3x^2}$$

- ► Target: "brute-force + aging" polarization method (< 30%)
 - Longitudinal (along beam direction): ⇒/<=</p>
 - Fixed in different data-sets

Study of polarization observables in the $\vec{\gamma} \vec{N} \rightarrow \pi^+ \pi^- N$ reaction Differential cross-section

$$rac{d\sigma}{dx_i} = \sigma_0 \{ (1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot} (\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot}) \}$$

- Differential cross-section expressed by four contributions which depend on polarization observables, weighted by the extent of beam δ_{\odot} and/or target Λ polarization
- The trend of the polarization observables depends on the resonance content in a given energy range
- Polarization observables are bilinear combinations of partial amplitudes (Roberts, Oed PRC71 (2005), 0552001): very sensitive to interference effects

Polarization observables extraction

Problem: extract from the number of collected events the I° , P, P° observables as a function of the Φ azimuthal angle in the helicity reference system, in W energy ranges

$$P_z = \frac{1}{\Lambda_z} \frac{[N(\rightarrow \Rightarrow) + N(\leftarrow \Rightarrow)] - [N(\rightarrow \Leftarrow) + N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow) + N(\leftarrow \Rightarrow)] + [N(\rightarrow \Leftarrow) + N(\leftarrow \Leftarrow)]}$$

$$I^{\odot} = \frac{1}{\delta_{\odot}} \frac{[N(\rightarrow \Rightarrow) + N(\rightarrow \Leftarrow)] - [N(\leftarrow \Rightarrow) + N(\leftarrow \Leftarrow)]}{[N(\rightarrow \Rightarrow) + N(\rightarrow \Leftarrow)] + [N(\leftarrow \Rightarrow) + N(\leftarrow \Leftarrow)]}$$

$$P_z^{\odot} = \frac{1}{\Lambda_z \delta_{\odot}} \frac{[N(\rightarrow \Rightarrow) + N(\leftarrow \Leftarrow)] - [N(\rightarrow \Leftarrow) + N(\leftarrow \Rightarrow)]}{[N(\rightarrow \Rightarrow) + N(\leftarrow \Leftarrow)] + [N(\rightarrow \Leftarrow) + N(\leftarrow \Rightarrow)]}$$

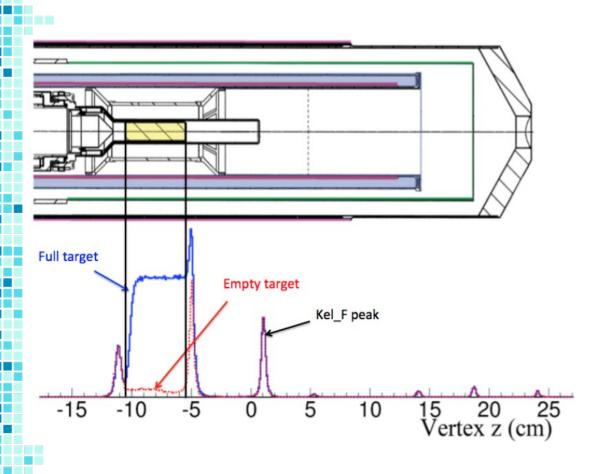
- Related to differential cross-section asymmetries
- Depending on the relative beam/target spin configurations
- Two data sets with opposite target (⇒/⇐) polarizations needed (with proper normalization)

Polarization asymmetries in ϕ_{hel} bins

$$\frac{d\sigma}{dx_i} = \sigma_0 \{ (1 + \Lambda_z \cdot \mathbf{P_z}) + \delta_{\odot} (\mathbf{I}^{\odot} + \Lambda_z \cdot \mathbf{P}_z^{\odot}) \}$$

- This equation (Roberts et al., PRC 718(2005), 055201) can be split in four depending on the orientation of beam helicity and target polarization (along z)
- Two data sets with opposite target polarization need to be used (but properly normalized)
- The system of equations can be solved analytically extracting, in every bin, I^{\odot} , P_z , P^{\odot}_z and σ_0

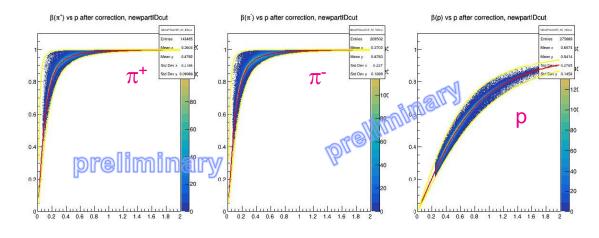
$$\begin{split} N_{exp}^{\rightarrow \Rightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 + \Lambda_z P_z + \delta_{\odot} (I_{\odot} + \Lambda_z P_z^{\odot}) \big] \\ N_{exp}^{\leftarrow \Rightarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 + \Lambda_z P_z - \delta_{\odot} (I_{\odot} + \Lambda_z P_z^{\odot}) \big] \\ N_{exp}^{\rightarrow \Leftarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 - \Lambda_z P_z + \delta_{\odot} (I_{\odot} - \Lambda_z P_z^{\odot}) \big] \\ N_{exp}^{\leftarrow \Leftarrow} &= \left(\frac{d\sigma}{d\Omega}\right)_0 \mathbf{L} \; \boldsymbol{\varepsilon} \big[1 - \Lambda_z P_z - \delta_{\odot} (I_{\odot} - \Lambda_z P_z^{\odot}) \big] \end{split}$$


$$I_{\odot} = \frac{\frac{N_{1}^{\rightarrow \Rightarrow} - N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}} + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{L}_{eff2}}{\mathsf{L}_{eff2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow} - N_{2}^{\leftarrow \Leftarrow}}{\delta_{\odot 2}}}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}$$

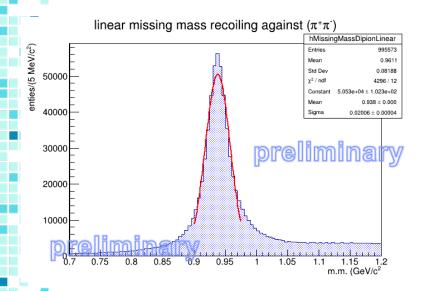
$$P_{z}^{\odot} = \frac{1}{\Lambda_{z2}} \cdot \frac{\frac{N_{1}^{\rightarrow \Rightarrow} - N_{1}^{\leftarrow \Rightarrow}}{\delta_{\odot 1}} - \frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} \cdot \frac{N_{2}^{\rightarrow \Leftarrow} - N_{2}^{\leftarrow \Leftarrow}}{\delta_{\odot 2}}}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}$$

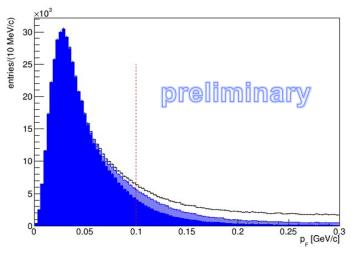
$$P_{z} = \frac{1}{\Lambda_{z2}} \cdot \frac{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) - \frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} \cdot (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}{(N_{1}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}{(N_{2}^{\rightarrow \Rightarrow} + N_{1}^{\leftarrow \Rightarrow}) + \frac{\Lambda_{z1}}{\Lambda_{z2}} \cdot \frac{\mathsf{L}_{eff1}}{\mathsf{L}_{eff2}} (N_{2}^{\rightarrow \Leftarrow} + N_{2}^{\leftarrow \Leftarrow})}$$

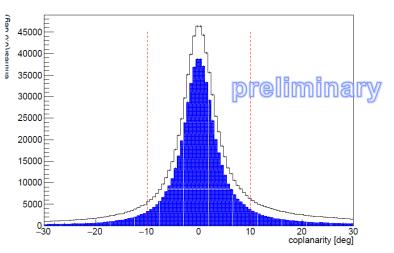
Experimental data: empty target subtraction



- Selection of events from the HD target: fiducial cut in r and z
- The events selected in the fiducial volume of the target contain the contribution from the target walls (unpolarized)
 - Empty target subtraction needed
 - Relative normalization of different runs: height of Kel-F wall peak
 - Subtraction with empty-target runs
- Events in the Kel-F peak also used for relative luminosity normalizations between different data sets



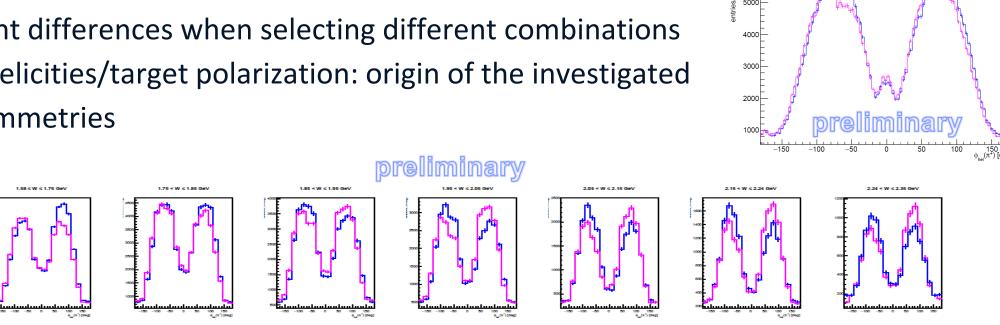

Data selection – exclusive $\vec{\gamma}\vec{p} \rightarrow \pi^+\pi^-p$ reaction


Description	Cut
Particle multiplicity	1 negative, 2 positives
Time coincidence	Time coincidence between: 1 proton, 1 π^+ , 1 π^-
$2\pi p$ z-vertex in HD target	$-9.5 < z_{vertex} < -5.8 \text{ cm}$
$2\pi p$ pId: β_{corr}	$p_{\pi^{\pm}}/\sqrt{p_{\pi^{p}m}^{2} + (m_{\pi} - 80 \text{ [MeV]})^{2}} \le \beta_{\pi^{\pm}}^{corr} \le p_{\pi^{\pm}}/\sqrt{p_{\pi^{\pm}}^{2} + (m_{\pi} + 80 \text{ [MeV]})^{2}}$
	$p_p/\sqrt{p_p^2 + (m_p - 200 \text{ [MeV]})^2} \le \beta_p^{corr} \le p_p/\sqrt{p_p^2 + (m_p + 200 \text{ [MeV]})^2}$
$2\pi p \; \mathrm{pId} \colon \Delta \beta $	$ \Delta(\beta_p) < 0.08$
	$p_{\pi^{\pm}} \le 500 [\text{MeV}/c]: \Delta(\beta_{\pi^{\pm}}) < 0.08$
	$p_{\pi^{\pm}} \ge 500 [\text{MeV}/c] : \Delta(\beta_{p)^{\pm}} < 0.2$
$2\pi p$ fiducial cuts	π^+ && π^- && p within fiducial volume
Missing mass for proton pId	$0.824 \le \text{m.m.}(\pi^+\pi^-) \le 1.052 [\text{GeV}/c^2]$
Total missing mass	$\text{m.m.}(\pi^+\pi^-p) < 0 \; [\text{GeV}/c^2]$
Fermi momentum	$p_F < 100~{ m MeV}/c$
Coplanarity	$ coplanarity < 10^{\circ}$

Particle ID for $\pi^+\pi^-$ and p based on TOF Further selection on $(\pi^+\pi^-)$ missing mass to identify the proton

Missing momentum cut: reject reactions without spectator at rest

Coplanarity cut for pion pairs


Experimental angular distributions

Inputs: azimuthal angular distributions (ϕ_{hel})

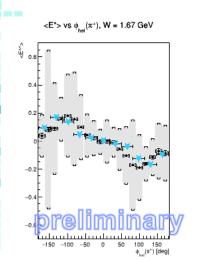
Bin by bin: number of events selected with

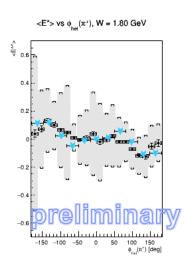
- Given helicity (positive/negative in the same data set)
- Given target polarization (in different data sets)
- Selection in W energy ranges (~100 MeV wide window)
- Counts to be properly normalized between different data sets

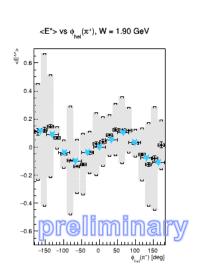
Slight differences when selecting different combinations of helicities/target polarization: origin of the investigated asymmetries

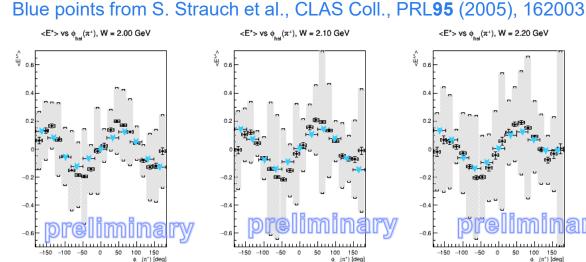
Set w/ positive target polarization

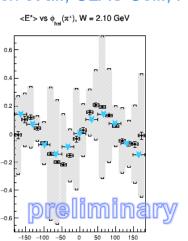
Set w/ negative target polarization

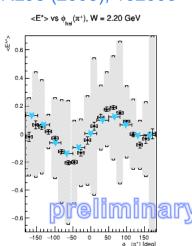


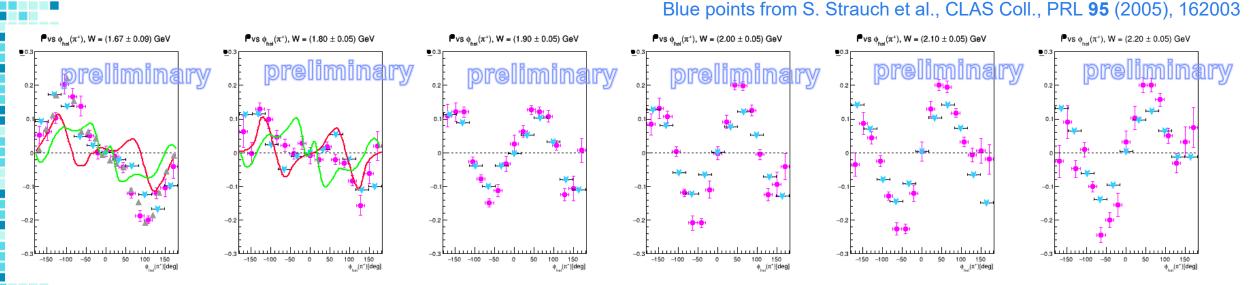

Evaluation of experimental beam-helicity asymmetries E*


E* can be extracted from all available data samples (with similar experimental conditions) For each data set:


$$E^* = \frac{1}{\delta_{\odot}} \frac{N^+ - N^-}{N^+ + N^-}$$


The E* values agree with previous measurements with polarized beam only (blue points) Systematic errors (grey bars) from the spread of values obtained with different data sets



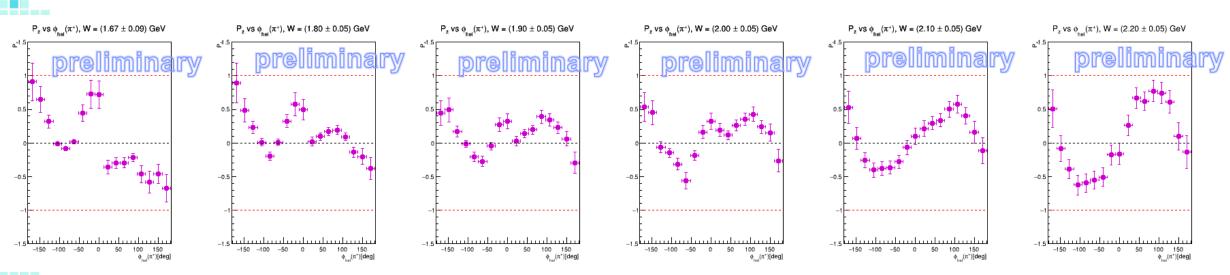


Preliminary results - 1° on proton

According to general symmetry principles I^{\odot} is expected to be an *odd* function of the helicity angle

- It depends only on the ratio of target polarizations
- The trend is in reasonable agreement with the earlier observations by CLAS based on a different data-set (E* with unpolarized target)

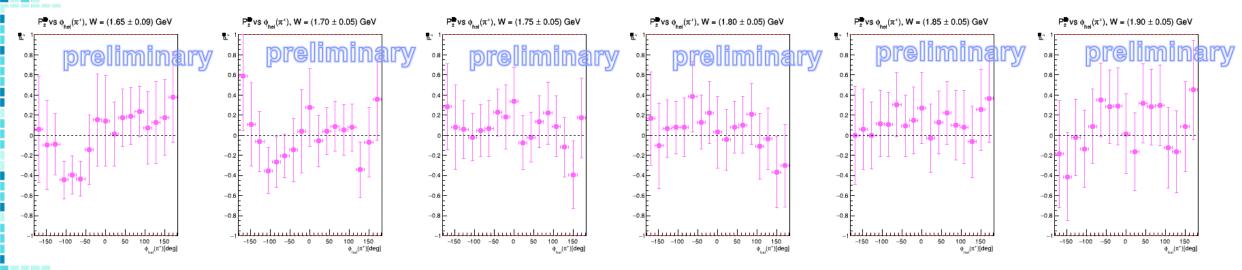
Preliminary results – P_z on proton


No other results available for comparisons: first results ever

 P_{γ} expected to be odd based on partial amplitudes symmetry

- Vanishing at zero angle: coplanarity condition
- When the helicity angle is oriented in the bottom hemisphere a sign flip occurs in Roberts' equations and, consequently, in the parity of the solutions

Improvingly symmetric odd trend with W increase


The lack of left/right symmetry could be due to instrumental reasons (different acceptance, ...)

Preliminary results – P_z° on proton

- No other results available for comparisons: first results ever
- P_z^{\odot} expected to be even based on partial amplitudes symmetry
- P_z^{\odot} is compatible with zero (within errors)
 - Large statistical uncertainties obtained from the error propagation of the system solutions small extent overall of target polarization (23% max.)

Summary and outlook

- Double-pion photoproduction with polarized beam and/or target as a novel tool to extract information about the baryonic spectrum
 - γp channel
 - Analysis completed on the richest data sets, extraction of results for other available compatible data sets pairs underway
 - Final evaluation of systematics in progress (take care of correlations among the sets)
 - Outlook: γn channel in progress
 - Same data analysis chain used for γp to be applied to the $\pi^+\pi^-$ n(p) final state
 - Use the same W binning and overall analysis approach
 - Stay tuned: some novel results upcoming!
- The interpretation of results in terms of partial amplitudes contributions calls for new models updating the interference patterns and reproducing the new observables
 - So far, none of the available reaction models agrees satisfactorily with the extracted asymmetries