Comparisons of $\boldsymbol{\Sigma}$ and \boldsymbol{G} asymmetries with different data and formulas

T. Kageya for g14, May. 8th 2024

Numbers for 1.98 < fW < 2.06 GeV (Haiyun's formula)

From 10th figure and 10th point for TK's data (9th figure and phi ~ 0 for Haiyun's plot)

P+ = 0.25, p- = 0.162 p1 = 0.785, p2 = 0.779, p3 = 0.78, p4 = 0.775 L1 = 8.621, L2 = 3.831, L3 = 8.685, L4 = 4.147

Cperp = 0.32055 Cpara = 0.322448s1 = -0.00469235 s2 = -0.0164208 s3 = 0.00466129 s4 = 0.0151621E = 0.321494 D = 0.369661a1 = 0.00364576 a2 = 0.0127582 a3 = 0.00364209 a4 = 0.0118469g1 = -0.0290504 g2 = 0.0658764 g3 = 0.0286883 g4 = -0.060469DG = 0.00199611

```
Y1 = 121 Y2 = 62 Y3 = 217 Y4 = 114
```

numr1 = 1.15412 numr2 = - 0.0988777 denom = 3.37303

Sigma = nmr1/denom = 0.342162

G = numr2/denom = -0.0313103

New!

Yield table for 1.98 < W < 2.06 GeV (TK's data, 20 bins) (TK's 10th and HL's 9th cos θ bin) (see TK's G formulas at page 6 and 7)

F1: 699 F2: 708 F3: 242 F4:271 (used for flux ratios)

Σ : four equations with different conditions: PERP (\perp), PARA (II) and Ptarget : + , -

$$N_{\perp}^{+}(\phi) = a(\phi) F_{\perp}^{+} \{ 1 + P_{\perp}^{+} \Sigma \cos(2\phi) - P_{+z} P_{\perp}^{+} G \sin(2\phi) \}$$
(1) PERP, + Target

$$N_{||}^{+}(\phi) = a(\phi) F_{||}^{+} \{ 1 - P_{||}^{+} \Sigma \cos(2\phi) + P_{+z} P_{||}^{+} G \sin(2\phi) \}$$
(2) PARA, + Target

 $N_{\perp}^{-}(\phi) = a(\phi) F_{\perp}^{-} \{ 1 + P_{\perp}^{-} \Sigma \cos(2\phi) + P_{-z} P_{\perp}^{-} G \sin(2\phi) \}$ (3) PERP, - Target

 $N_{||}^{-}(\phi) = a(\phi) F_{||}^{-} \{ 1 - P_{||}^{-} \Sigma \cos(2(\phi) - P_{-z} P_{||}^{-} G \sin(2\phi) \}$ (4) PARA, -Target

F: flux, $a(\phi)$: acceptance, P_{\perp}^+ : Linear Pol., P_{+z} : target D pol.

 $(1)/F_{\perp}/P_{\perp}^{+}/P_{+z} - (2)/F_{||}^{+}/P_{||}^{+}/P_{+z} + (3)/F_{\perp}^{-}/P_{\perp}^{-}/P_{-z} - (4)/F_{||}^{-}/P_{||}^{-}/P_{-z}$

 $(1)/F_{\perp}/P_{\perp}^{+}/P_{+z} + (2)/F_{\parallel}^{+}/P_{\parallel}^{+}/P_{+z} + (3)/F_{\perp}^{-}/P_{\perp}^{-}/P_{-z} + (4)/F_{\parallel}^{-}/P_{\parallel}^{-}/P_{-z}$

 $a(\phi) \times \{1/P_{+z}/P_{\perp}^{+} - 1/P_{+z}/P_{\parallel}^{+} + 1/P_{-z}/P_{\perp}^{-} - 1/P_{-z}/P_{\parallel}^{-} + 2/P_{+z} + 2/P_{-z}) \Sigma \cos 2\phi\} C_{1} + C_{2} \Sigma \cos(2\phi)$

 $(1/P_{+z}/P_{\perp}^{+}/+1/P_{+z}/P_{\parallel}^{+}+1/P_{-z}/P_{\perp}^{-}+1/P_{-z}/P_{\parallel}^{-}) \times a(\phi)$

 C_3

\Sigma Plot the following ratios for each θ

Input of N: yield, F: flux, $a(\phi)$: acceptance, P_{\perp}^+ : Linear Pol., P_{+z} : target D pol. to make ratios

 $N_{\perp}^{+}/F_{\perp}/P_{\perp}^{+}/P_{+z} - N_{\parallel}^{+}/F_{\parallel}^{+}/P_{\parallel}^{+}/P_{+z} + N_{\perp}^{-}/F_{\perp}^{-}/P_{\perp}^{-}/P_{-z} - N_{\perp}^{-}/F_{\parallel}^{-}/P_{\parallel}^{-}/P_{-z}$

for each $\cos \theta$ bin

 $N_{\perp}^{+}/F_{\perp}/P_{\perp}^{+}/P_{+z} + N_{\parallel}^{+}/F_{\parallel}^{+}/P_{\parallel}^{+}/P_{+z} + N_{\perp}^{-}/F_{\perp}^{-}/P_{-z} + N_{\perp}^{-}/F_{\parallel}^{-}/P_{-z}$

G : four equations with different conditions: PERP (\perp), PARA (II) and Ptarget : + , -

$$N_{\perp}^{+}(\phi) = a(\phi) F_{\perp}^{+} \{ 1 + P_{\perp}^{+} \Sigma \cos(2\phi) - P_{+z} P_{\perp}^{+} G \sin(2\phi) \}$$
(1) PERP, + Target

$$N_{||^{+}}(\phi) = a(\phi) F_{||^{+}} \{ 1 - P_{||^{+}} \Sigma \cos(2\phi) + P_{+z} P_{||^{+}} G \sin(2\phi) \}$$
(2) PARA, + Target

 $N_{\perp}^{-}(\phi) = a(\phi) F_{\perp}^{-} \{ 1 + P_{\perp}^{-} \Sigma \cos(2\phi) + P_{-z} P_{\perp}^{-} G \sin(2\phi) \}$ (3) PERP, - Target

 $N_{||}^{-}(\phi) = a(\phi) F_{||}^{-} \{ 1 - P_{||}^{-} \Sigma \cos(2(\phi) - P_{-z} P_{||}^{-} G \sin(2\phi) \}$ (4) PARA, -Target

F: flux, $a(\phi)$: acceptance, P_{\perp}^+ : Linear Pol., P_{+z} : target D pol.

 $-(1)/F_{\perp}^{+}/P_{\perp}^{+}+(2)/F_{\parallel}^{+}/P_{\parallel}^{+}+(3)/F_{\perp}^{-}/P_{\perp}^{-}-(4)/F_{\parallel}^{-}/P_{\parallel}^{-}$

 $(1)/F_{\perp}^{+}/P_{\perp}^{+} + (2)/F_{\parallel}^{+}/P_{\parallel}^{+} + (3)/F_{\perp}^{-}/P_{\perp}^{-} + (4)/F_{\parallel}^{-}/P_{\parallel}^{-}$

a(ϕ) x { - 1/P₁⁺ + 1/P₁⁺ + 1/P₁⁻ - 1/P₁⁻ + 2 (P_{+z} + P_{-z}) G sin (2(ϕ) }

Fit C₁ + C₂ G sin(2φ)

 C_3

 $(1/P_{\perp}^{+} + 1/P_{\parallel}^{+} + 1/P_{\perp}^{-} + 1/P_{\parallel}^{-}) x a(\phi)$

G : Plot the following ratios for each θ

Input of N: yield, F: flux, $a(\phi)$: acceptance, P_{\perp}^+ : Linear Pol., P_{+z} : target D pol. to make ratios

$$- N_{\perp}^{+} / F_{\perp}^{+} / P_{\perp}^{+} + N_{||}^{+} / F_{||}^{+} / P_{||}^{+} + N_{\perp}^{-} / F_{\perp}^{-} / P_{\perp}^{-} - N_{||}^{-} / F_{||}^{-} / P_{||}^{-}$$

for each $\cos \theta$ bin.

 $N_{\perp}^{+}/F_{\perp}^{+}/P_{\perp}^{+} + N_{\parallel}^{+}/F_{\parallel}^{+}/P_{\parallel}^{+} + N_{\perp}^{-}/F_{\perp}^{-}/P_{\perp}^{-} + N_{\parallel}^{-}/F_{\parallel}^{-}/P_{\parallel}^{-}$

+

Comparisons of two data sets and two fomulas (Σ, HL's 8th bin)

Comparisons of two data sets and two fomulas (Σ, HL's 8th bin)

Comparisons of two data sets and two fomulas (Σ, HL's 9th bin)

Comparisons of two data sets and two fomulas (Σ, HL's 9th bin)

Comparisons of two data sets and two fomulas (G, HL's 8th bin)

T. Kageya, for g14, May. 8th, 2024

Comparisons of two data sets and two fomulas (G, HL's 8th bin)

Comparisons of two data sets and two fomulas (G, HL's 9th bin)

Comparisons of two data sets and two fomulas (G, HL's 9th bin)

Annalisa's formulas

50 P++P-= Target + Target -Zcon24 P++ ?-190 Target -Target +

Comparisons of two data sets and different formulas for **S**

(High lighted for HL's 8th and 9th bins)

 Σ asymmetries on ϕ , 1.98 < W < 2.06 GeV, mm < 0.16 Annalisa's formula

Comparisons of two data sets and two formulas for $\boldsymbol{\Sigma}$

(Expanded view for HL's 8th and 9th bins)

 Σ asymmetries on ϕ , 1.98 < W < 2.06 GeV, mm < 0.16 Annalisa's formula

Comparisons of three formulas for G -- Consistent results from three formulas

Summary

1. For Σ, on 1.98 < W < 2.06 bin, results for HL's 8th and 9th bins are consistent for HL and TK'data and different formulas and reproduce g13 results.

Asymmtries do not depend on formulas.

- 2. For G, on 1.98 < W < 2.06 bin, asymmtries don't depend on formulas.
- 3. Expect Haiyun's final results including constant parameters in the fits.

Comments

1. Systematic error bands in HL's results could be on different location.

2. To rebin for W could be a possible option.

W VS Distance to Coherent Edge

(b) W versus the difference between coher-(a) W versus the difference between coher-(b) W versus the difference between coher-T. Kageya, for g14, May. 8th, 2024 T. Kageya, for g14, May. 8th, 2024 photon ranges