The G₂^p Experiment

A Measurement of Proton g_2 Structure Function And the Longitudinal-Transverse Spin Polarizability

Jie Liu

University of Virginia On behalf of the g_2^p collaboration

Inclusive Electron Scattering

- Invariant Mass $W^2 = M^2 + 2M\nu - Q^2$
- Four momentum transfer squared $Q^2 = -q^2$
- Bjorken variable $x = Q^2/2M\nu$ for fixed target

 g_2^{P} experiment measure

Hall B EG4 measure g_1^{P} , g_2^{P} experiment one measurement to cross check

01/20/2016

Hall A Collaboration Meeting

Motivation

- Measure the proton spin structure function g_2 in the low Q^2 region (0.02 < Q^2 < 0.2 GeV²) for the first time
- Benchmark test of χ PT with extraction of δ_{LT}
- Examine the Burkhardt-Cottingham sum rule at low Q^2
- Important inputs for hydrogen hyperfine splitting and proton charge radius measurements

g_2 Existing Data

Hard to cleanly measure g₂^P
No much data before

Proton g_2 Data from SLAC Averaged $Q^2 \approx 5 \ GeV^2$

Proton g_2 Data from Jlab SANE $Q^2 \approx 2.5 \sim 5.5 \ GeV^2$

Proton g_2 Data from Jlab RSS $Q^2 = 1.3 \ GeV^2$

K.S., O. Rondon *et al.* PRL 105, 101601 (2010)

01/20/2016

BC Sum Rule

BC Sum Rule:

$$\int_0^1 g_2(x,Q^2)dx = 0$$

Experiment Test:

BC = Measured + low_x + Elastic

- Violation suggested for proton at large Q²
- Q² is not a constant for E155x, varies 0.8 ~ 8.2 GeV²
- But found satisfied for the neutron & ³He
- Mostly unmeasured for proton

01/20/2016

Hall A Collaboration Meeting

Jie Liu <jie@jlab.org>

4

δ_{LT} Puzzle for Neutron

Generalized Spin Polarizabilities: how nucleons respond to virtual photons

 $\delta_{LT} (Q^2) = \frac{16\alpha M^2}{Q^6} \int_0^{x_0} dx x^2 [g_1(x, Q^2) + g_2(x, Q^2)]$

- δ_{LT} not sensitive to Δ , good to test χPT calculations
- Good agreement with MAID model predictions
- χPT fail -- puzzle?
- HBxPT: Kao, Spitzenberg, Vanderhaeghen
- PRD 67:016001(2003)
- RBxPT: Bernard, Hemmert, Meissner
- PRD 67:076008(2003)
- No proton data yet

Plots courtesy of V. Sulkosky : Preliminary E97-110 and Published E94-01001/20/2016Hall A Collaboration MeetingJie Liu < jie@jlab.org>

δ_{LT} Puzzle

• Recent Theory Progress about $\delta_{LT}(Q^2)$

- Blue Band: xPT
- Lensky, Alarcon & Pascalutsa
- PRC 90 055202 (2014)

• Grey Band: RBxPT

- Bernard et al., PRD 87 (2013)
- Blacked Dotted: MAID
- Disagreement resolved?
- Need proton data

01/20/2016

Hall A Collaboration Meeting

Hydrogen Hyperfine Splitting

• Hydrogen hyperfine splitting in the ground state has been measured to a relative high accuracy of 10^{-13} .

 $\Delta_E = 1420.405\ 751\ 766\ 7(9)\ MHz$ $= (1 + \delta)E_F$

$$\delta = \left(\delta_{QED} + \delta_R + \delta_{small}\right) + \Delta_s$$

 Δ_s : proton structure function correction

- largest uncertainty
- depends on ground state and excited properties of the proton $\Delta_s = \Delta_z + \Delta_{pol}, \Delta_{pol} \approx 1.3 \pm 0.3 \text{ ppm}$

$$\Delta_{pol} = \frac{\alpha m_e}{\pi g_p m_p} (\Delta_1 + \Delta_2)$$

• Improve Δ_2 error from 0.57 to 0.06ppm

01/20/2016

Experiment setup

Local

Dump

- Transverse polarized *NH*₃ target
- Low beam current (< 100nA) diagnostics
- Rasters/Chicane magnets
- Local beam dump
- High DAQ rates 6~7kHz with <30% dead time (Courtesy of Ryan Zielinski)

Chicane

BCM Rasters

BPM

NH₃ Target

Polarized

Analysis Flow Chart

01/20/2016

Hall A Collaboration Meeting

Optics

- Goal: 5% systematic uncertainty when measuring cross section
- 1.0% systematic uncertainty of scattering angle, which will contribute around 4.0% to the uncertainty of cross section
- Reconstruct the kinematics variables of the scattered electrons with the tracking information by a matrix

01/20/2016

Optics

- Optics without Target Field
 - -- Beam energy 2.254 GeV, carbon foil

	LHRS	RHRS	Ref
δ [dp]	1.5×10 ⁻⁴	2.4×10 ⁻⁴	I.IxI0 ⁻⁴
θ [out-of-plane angle]	I.59 mrad	I.57 mrad	2.5 mrad
У	3.3 mm	2.9 mm	I.7 mm
φ [in-plane angle]	0.99 mrad	0.82 mrad	0.9 mrad

Optics with target field
 Standard HRS + target field + septum
 But septum magnets broken...

01/20/2016

Optics

• Optics with Target Field

Standard HRS + target field + septum

- ✓use the data taken with the broken septum to recalibrate angle matrix
- $\checkmark A$ simulation package: do ray tracing in the target field
 - to calculate reference angles -- recalibration of matrix
 - to calculate the real scattering angles when reconstruction / VDC

01/20/2016

Acceptance

Unpolarized cross section

• $\frac{d\sigma^{raw}}{d\Omega dE'} = \frac{N \cdot ps \cdot RC}{Q/q \cdot N_{tg}LT \cdot \epsilon_{det}} \frac{Acc}{\Delta \Omega \Delta E'}$

Use Monte-Carlo simulation to study Acceptance

• $\frac{Acc}{\Delta\Omega\Delta E'} = \frac{1}{\Delta\Omega^{MC}\Delta E'^{MC}} \frac{N_{simu}^{MC}}{N_{acc}^{MC}}$

Method:

- Generate transport functions to describe trajectories (Snake)
 - Forward/backward between target and focal plane
 - Forward to multiple end-planes along the trajectories to define apertures
- Transport functions compiled into simulation package (g2psim)
- Work still continue ...

courtesy of Min Huang

01/20/2016

Hall A Collaboration Meeting

Target Cell Packing Fraction

- Packing Fraction (p_f) -- Ratio of NH_3 volume to the whole cell
- Method: $Y_{prod} = Y_{He}^{out} + (1 p_f)Y_{He}^{full} + p_fY_{NH_3}^{full}$
- ✓ Compare the experiment elastic yields
- ✓ Extract N/He volume ratio with input from simulation

Target Cell Packing Fraction

• Packing Fraction (p_f) -- $Y_{prod} = Y_{He}^{out} + (1 - p_f)Y_{He}^{full} + p_f Y_{NH_2}^{full}$

- Only concerned with elastic peak
- 2nd peak: contributions from multiple materials --QFS model to understand relative contributions

01/20/2016

Hall A Collaboration Meeting

courtesy of Melissa Cummings

(material 17): $p_f = 0.579 \pm 0.025$ 120

Yields Drift

- Around 7% data have yields spread > 3.5% respect to runs in the same setting
- Method: Cut the raster size (corresponding charge) to remove the boundary effects

 Yields Drift problem resolved for half of these yields drifting data

01/20/2016

Hall A Collaboration Meeting

Preliminary Results

$$\begin{split} &\Delta \sigma_{\perp} = A_{\perp} \times \sigma_{0} \\ &A_{\perp} = \frac{\sigma^{\uparrow \Rightarrow} - \sigma^{\downarrow \Rightarrow}}{\sigma^{\uparrow \Rightarrow} + \sigma^{\downarrow \Rightarrow}} \\ &A_{\parallel} = \frac{\sigma^{\uparrow \uparrow} - \sigma^{\downarrow \uparrow}}{\sigma^{\uparrow \uparrow} + \sigma^{\downarrow \uparrow}} \end{split}$$

- ✓ Fully radiated asymmetries (red curve)
- Cross section models: Peter Bosted's fit (unpolarized) and MAID 2007 (polarized)
- Include Unpolarized and polarized elastic tail
- Radiating methods: Mo/Tsai (unpolarized) and Akushevich/Ilyichev/Shumeiko (polarized)

01/20/2016

Hall A Collaboration Meeting

Summary

- The g2p experiment took data covering M_p < W < 2 GeV, 0.02 < Q² < 0.2 GeV²
- Will provide a precision measurement of g_2^p in the low Q^2 region for the first time
- Results will help to understand several physics puzzles, such as δ_{LT}
- Analysis is in progress
 - Target polarizations: Nucl. Instrum. Meth. A738(2014)54
 - BPM reconstruction: Nucl.Instrum.Meth. A808 (2016) 1-10 ...

01/20/2016

G_2^P Collaboration

Spokepeople

- Alexandre Camsonne (Jlab)
- Jian-Ping Chen (JLab)
- Don Crabb (UVA)
- Karl Slifer (UNH)

Post Docs

- Kalyan Allada
- Elena Long
- James Maxwell
- Vince Sulkosky
- Jixie Zhang

Graduate Student

- Toby Badman
- Melissa Cummings
- Chao Gu
- Min Huang
- Jie Liu
- Pengjia Zhu
- Ryan Zielinski

Thanks!

01/20/2016