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1 Functional forms

The continuum limit is a critical step in any precision lattice calculation. In this study, we take
advantage of the symmetries of the reduced pseudo-ITD to parameterize the lattice spacing correction.
The matrix element has the property

M(p, z,a) = M (—p, z,a) = M*(p, —z,a) = M(—p, —2z,a), (1)

which we used when constructing the summed 3pt correlation functions to increase statistical precision.
The last relation restricts lattice spacing errors with odd powers must be functions of a|p| and a/|z|.
A Taylor expansion in lattice spacing will give the expansion

M(p, 2, a) = Meons (v 2%) + Y (alp|)" Pu(v) + (%)”Qn(w : (2)

It is important to note that the coefficients of the lattice spacing errors can be functions of the Ioffe
time. A previous parameterization of lattice spacing errors for parton observables have neglected this
potentially significant feature [?]. In fact, the leading term, independent of Ioffe time, which they do
include is not present in this calculation. It is cancelled in the ratio defining the reduced pseudo-ITD,
just like the leading higher twist effects. In the recent work [?], the Ioffe time dependence is taken
into account by fitting the lattice spacing dependence by fixing p and fitting an interpolation of their
data in z. In this study, we do not have ensembles with different lattice spacing and the same spatial
extent, so this simpler technique cannot be used.

As will be seen, the terms higher order in Ioffe time are necessary for a reliable continuum limit since
all lattice calculations of partonic distributions utilize v > 1. There are also potential 2% dependence
on the lattice spacing coefficients. Those effects would be suppressed either by « or A?QCDZQ’ so they
will be neglected here.

Using the relationships in Eq. [I} we can see that the terms in P, and @, which are odd in v are
purely imaginary and the terms even in v are purely real, just like reduced pseudo-ITD. Since we will be
working in a fixed frame and only have access to data with positive p, z, and v, this parameterization
can be rearranged by remembering |v| = |z||p|. This relation allows for mixing terms from P, and
Q@rn. One could replace (ﬁ)”@n(u) with a (a|p|)"P),(v) where P'(v) would have real odd powers of
|v| terms and imaginary even powers of |v|. For this study, we will make this substitution and fit ap
errors for all powers of || up to nap.

Even though the action is O(a) improved, the Wilson line operator is not, so we will work solely
with O(a) errors. Since there appears to be no large lattice spacing dependence in Fig. 77, we expect
higher orders in a will be small.

For this study, we will parameterize P; as the sum of Chebyshev polynomials, T, (x),
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where vy is the largest Ioffe time used in the analysis and A%ap are complex fit parameters. Similarly

@1 is defined where the sum goes up to n,, and the AS?Z) are fit. We will also parameterize the



continuum reduced pseudo-ITD as
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where ¢, (u?2?) is the perturbative matching kernel for the n'" moment, a,(x?). The higher twist

nuisance parameters B, will be fit parameters. The continuum limit moments will be determined from
model PDF of the form
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in analogy to the procedure performed by phenomenological determinations of the PDF.

2 Fits

I have found the best fit for a wide range of functional forms with the models described in Table [I] In

ny | 6,8, 10
Nht 0...8
Nap 0...8
npar | 2,4, 6

Table 1: The parameters defining the models.

general I have found that the y2/dof was consistently smaller for the real component, almost always
being less than 2. The imaginary component was much more sensitive to fit models. For example for
a x2/dof < 4, the nap had to be at least 2. Fig [If shows ITDs for the best fit with the lowest average
x2/dof for the real component, model 8, 4, 7, 2, and for the imaginary component, model 6, 4, 7, 2.
Fig |2| show the nuisance polynomials. Fig [3| shows the PDFs. It should be noted that these average
x2/dof are well within statistical errors of other models. It wouldn’t be appropriate to just consider
this model as the best.
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Figure 1: The best fit ITDs.

Instead of being reliant on the best fit, we can use some sophisticated statistical methods for
combining these models. The recent MSU work used a technique of creating a weighted average using
the AIC. The AIC is defined by

A=x?—2k (6)

where k is the number of parameters in a model. The weights for the average are

wi=e NN e (7)
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Figure 2: The best fit nuisance polynomials.

Figure 3: The best fit PDFs.




for the 7*® model. T have performed this model average over all of the fits I've done. Unfortunately the
PDF models with npq¢ > 2 are extremely noisy in the real component. It appears they have lost the
strong correlations in the non exponent parameters, leading to wild fluctuations. Fig [4]shows the AIC
weighted average for all models and for all models with n,q; = 2.
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Figure 4: The AIC weighted average for all models (left) and for all models with npqf = 2 (right).
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