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We need to examine the reduced Ioffe time distribution

M(ν, z2) = Mg(ν, z2)
Mg(0, z2) , (1)

where Mg is defined by

Mg(ν, z2) = 1
E2 〈P |

[
Otjtj(z, 0) +Oijij(z, 0)

]
|P 〉, (2)

The gluon matrix element renormalises multiplicatively, so the UV divergences should cancel, just as
they do for the quark case. In fact, the above discussion goes through, as it does for the quark case,
although there is one complication. The denominator in the light-cone limit for this case is

Mg(0, 0) = 1
M2
N

〈MN |
[
Otjtj(0, 0) +Oijij(0, 0)

]
|MN 〉 =

∫ 1

0
dxxfg(x, µ2) ≡ 〈x〉(µ2), (3)

which is no longer simply one and must be determined nonperturbatively.
The reduced matrix element is now

Mg(ν, z2) =
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)
Mg(0, z2, µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)∫
dv Zg(v, z2µ2)Mg(0, 0, µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)
〈x〉(µ2)

∫
dv Zg(v, z2µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)∫
dv Zg(v, z2µ2) +O(z2)

= Cg(z2µ2)
∫

duZg(u, z2µ2)Mg(uν, 0, µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2) +O(z2)

=
∫ du
|ν|
Zg

(
u

ν
, z2µ2

)
Mg(u, 0, µ2) +O(z2), (4)
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where Zg can be obtained order-by-order from Zg and Cg and we have

Mg(ν, 0) = Mg(ν, 0, µ2)
〈x〉(µ2) . (5)

The relation between the gluon PDF and the matrix element is now

fg/H(x, µ2) =
∫ dν
πx
e−ixνMg(ν, 0, µ2) +O(z2), (6)

where the factor of 2/x has been absorbed into the usual 1/(2π) from the (inverse) Fourier transform1.
Note that we calculateMg(ν, 0), but we need Mg(ν, 0, µ2, so we should write

fg/H(x, µ2)
〈x〉(µ2) =

∫ dν
πx
e−ixνMg(ν, 0, µ2) +O(z2), (7)

Thus

Mg(ν, z2) =
∫ du
|ν|
Zg

(
u

ν
, z2µ2

) 2
〈x〉(µ2)

∫
dx eixuxfg/H(x, µ2) +O(z2)

= 2
〈x〉(µ2)

∫
dx
∫ du
|ν|

eixu Zg

(
u

ν
, z2µ2

)
xfg/H(x, µ2) +O(z2)

= 1
〈x〉(µ2)

∫ dx
x

2
∫

dv eivν Zg
(
v

x
, z2µ2

)
xfg/H(x, µ2) +O(z2)

= 1
〈x〉(µ2)

∫ dx
x
Cg

(
ν

x
, z2µ2

)
xfg/H(x, µ2) +O(z2). (8)

To collect together things that we calculate on the lattice, we can write this as

〈x〉(µ2)Mg(ν, z2) =
∫ dx

x
Cg

(
ν

x
, z2µ2

)
xfg/H(x, µ2) +O(z2), (9)

where

Cg
(
ν, z2µ2

)
= 2

∫
dv eivν Zg

(
v, z2µ2

)
= 2Cg(z2µ2)

∫
dv eivν Zg(v, µ2z2)

= 2∫
duZg(u, µ2z2)

∫
dv eivν Zg(v, µ2z2), (10)

1The factor of two comes from the Lorentz decomposition of the general matrix element Mµνρσ and the factor of x
is always a thing for gluons.
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and Zg(v, µ2z2) is obtained from

Mg(ν, z2, µ2) =
∫

duZg(u, µ2z2)Mg(uν, 0, µ2) +O(z2). (11)

From this discussion, it is clear that we need the normalisation

Mg(0, 0, µ2) =
∫ 1

0
dxxfg(x, µ2) ≡ 〈x〉(µ2), (12)

which must be determined nonperturbatively via Mg(0, 0, τ) (and matched to the MS scheme). This
matching procedure is of course carried out perturbatively. So if we write2

〈x〉MS(µ2) = F(µ2τ)〈x〉(τ), (13)

then we have

〈x〉(τ)Mg(ν, z2) =
∫ dx

x
C̃g

(
ν

x
, z2µ2, µ2τ

)
xfg/H(x, µ2) +O(z2), (14)

with a left-hand side that is determined on the lattice and a right-hand side that is entirely pertur-
bative:

C̃g
(
ν, z2µ2, µ2τ

)
= F−1(µ2τ)Cg

(
ν, z2µ2

)
. (15)

2I discuss the determination of F(µ2τ) at one loop in a separate set of notes.
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0.1 A better ratio

In fact the reduced matrix element we’re using is

M(ν, z2) = Mg(ν, z2, µ2)Mg(0, 0, µ2)
Mg(0, z2, µ2)Mg(Pz, 0, µ2) , (16)

which clearly fixes
M(0, z2) = 1. (17)

The reduced matrix element is now

Mg(ν, z2) =
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)
Mg(0, z2, µ2)

Mg(0, 0, µ2)
Mg(Pz, 0, µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)∫
dv Zg(v, z2µ2)Mg(0, 0, µ2)

Mg(0, 0, µ2)
Mg(Pz, 0, µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)
Mg(Pz, 0, µ2)

∫
dv Zg(v, z2µ2) +O(z2). (18)

It seems to me that the best way to express this is then

Mg(Pz, 0, µ2)Mg(ν, z2) =
∫

duZg(u, z2µ2)Mg(uν, 0, µ2)∫
dv Zg(v, z2µ2) +O(z2)

= Cg(z2µ2)
∫

duZg(u, z2µ2)Mg(uν, 0, µ2) +O(z2)

=
∫

duZg(u, z2µ2)Mg(uν, 0, µ2) +O(z2)

=
∫ du
|ν|
Zg

(
u

ν
, z2µ2

)
Mg(u, 0, µ2) +O(z2). (19)

The relation between the gluon PDF and the matrix element is

fg/H(x, µ2) =
∫ dν
πx
e−ixνMg(ν, 0, µ2) +O(z2), (20)

so

Mg(Pz, 0, µ2)Mg(ν, z2, µ2) =
∫ du
|ν|
Zg

(
u

ν
, z2µ2

)
2
∫

dx eixuxfg/H(x, µ2) +O(z2)

= 2
∫

dx
∫ du
|ν|

eixu Zg

(
u

ν
, z2µ2

)
xfg/H(x, µ2) +O(z2)

=
∫ dx

x
2
∫

dv eivν Zg
(
v

x
, z2µ2

)
xfg/H(x, µ2) +O(z2)

=
∫ dx

x
Cg

(
ν

x
, z2µ2

)
xfg/H(x, µ2) +O(z2). (21)
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As before, we need to relate the local matrix element in the MS scheme to that determined via
the gradient flow

Mg(Pz, 0, τ)Mg(ν, z2) =
∫ dx

x
C̃g

(
ν

x
, z2µ2, µ2τ

)
xfg/H(x, µ2) +O(z2), (22)

with a left-hand side that is determined on the lattice and a right-hand side that is entirely pertur-
bative:

C̃g
(
ν, z2µ2, µ2τ

)
= F−1(µ2τ)Cg

(
ν, z2µ2

)
. (23)

Note we expect that F(µ2τ) to be independent of Pz, since it is calculable in perturbation theory.
Thus I think one expects that the normalisation is, in fact, the momentum fraction plus nonper-

turbative lattice artefacts (although I’m not sure of the functional form)

Mg(Pz, 0, τ) = Mg(0, 0, τ) +O(a2P 2
z )

= F−1(µ2τ)Mg(0, 0, µ2) +O(a2P 2
z )

= F−1(µ2τ)〈x〉g(µ2) +O(a2P 2
z ). (24)

If this is indeed true, then the matching can probably use the published results for the energy
momentum tensor at finite flow time. However, I am not yet convinced that this is the correct
approach - it still seems to me that we should treat the normalisation as Mg(Pz, 0, τ) and
not 〈x〉g.
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