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Abstract

We present the results that are necessary in the ongoing lattice calculations of the gluon parton distribution func-
tions (PDFs) within the pseudo-PDF approach. We give a classification of possible two-gluon correlator functions
and identify those that contain the invariant amplitude determining the gluon PDF in the light-cone z2 → 0 limit.
One-loop calculations have been performed in the coordinate representation and in an explicitly gauge-invariant
form. We made an effort to separate ultraviolet (UV) and infrared (IR) sources of the ln

(
−z2

)
-dependence at short

distances z2. The UV terms cancel in the reduced Ioffe-time distribution (ITD), and we obtain the matching relation
between the reduced ITD and the light-cone ITD. Using a kernel form, we get a direct connection between lattice
data for the reduced ITD and the normalized gluon PDF. We also show that our results may be used for a rather
straightforward calculation of the one-loop matching relations for quasi-PDFs.

1. Introduction

Lattice calculations of parton distribution functions
(PDFs) are now a subject of considerable interest and
efforts (see Ref. [1] for a recent review and references
to extensive literature). Modern efforts aim at the ex-
tractions of PDFs f (x) themselves rather than their xN

moments. On the lattice, this is possible if one starts
with equal-time correlators, the idea put forward in
Refs. [2, 3] in application to the current-current cor-
relators.

X. Ji, in the paper [4] that strongly stimulated further
development, made a ground-breaking proposal to con-
sider equal-time versions of nonlocal operators defin-
ing PDFs, distribution amplitudes, generalized parton
distributions, and transverse momentum dependent dis-
tributions. In the case of usual PDFs, the basic concept
of Ji’s approach is a “parton quasi-distribution” (quasi-
PDF) Q(y, p3) [4, 5], and PDFs are obtained from the
large-momentum p3 → ∞ limit of quasi-PDFs.

Other approaches, such as the “good lattice cross
sections” [6, 7], the Ioffe-time analysis of equal-time
correlators [3, 8, 9] and the pseudo-PDF approach
[10, 11, 12] are coordinate-space oriented, and extract
parton distributions taking the short-distance z3 → 0
limit.

Both the p3 → ∞ and z3 → 0 limits are singular,
and one needs to use matching relations to convert the
Euclidean lattice data into the usual light-cone PDFs.
In the quasi-PDF approach, such relations were studied
for quark [4, 13, 14, 15] and gluon PDFs [16, 17, 18],
for the pion distribution amplitude (DA) [19] and gen-
eralized parton distributions (GPDs) [19, 20, 21].

Within the pseudo-PDF approach, the matching rela-
tions were derived for non-singlet PDFs [22, 23, 24, 25,

15]. The strategy of the lattice extraction of non-singlet
GPDs and the pion DA using the pseudo-PDF meth-
ods was outlined in a recent paper Ref. [26], where
the matching conditions for these cases have been also
derived. In the present paper, our main goal is to de-
scribe the basic points of the pseudo-PDF approach to
extraction of unpolarized gluon PDFs, and also to find
one-loop matching conditions.

In the gluon case, the calculation is complicated
by strict requirements of gauge invariance. In this
situation, a very effective method is provided by the
coordinate-representation approach of Ref. [27]. It is
based on the background-field method and the heat-
kernel expansion. It allows, starting with the original
gauge-invariant bilocal operator, to find its modifica-
tion by one-loop corrections. The results are obtained
in an explicitly gauge-invariant form.

In this approach, there is no need to specify the na-
ture of matrix element characteristic of a particular par-
ton distribution. This means that one and the same
Feynman diagram calculation may be used both for
finding matching conditions for PDFs (given by for-
ward matrix elements), and for DA’s and GPDs cor-
responding to non-forward ones (see Ref. [26] for an
illustration of how this works for quark operators).

The paper is organized as follows. In Section 2, we
analyze the kinematic structure of the matrix elements
of the gluonic bilocal operators, and identify those that
contain information about the twist-2 gluon PDF.

Next, we discuss one-loop corrections. In Section 3,
we analyze the gauge-link self-energy contribution and
specific properties of its ultraviolet and short-distance
behavior. Our results for the vertex corrections to the
gluon link are given in Section 4 in the form that is valid
both in forward and non-forward cases. The “box” dia-
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gram is discussed in Section 5. Since our results in this
case are rather lengthy, we present just some of them,
and in the forward case only. The gluon self-energy
corrections are discussed in Section 6.

The subject of Section 7 is the structure of pertur-
bative evolution of the gluon operators and matching
conditions. Section 8 contains a summary of the paper.

2. Matrix elements

The nucleon spin-averaged matrix elements for op-
erators composed of two-gluon-fields (with all four in-
dices non-contracted) are specified by

Mµα;λβ(z, p) ≡ 〈p|Gµα(z) [z, 0] Gλβ(0)|p〉 , (2.1)

where [z, 0] is the standard straight-line gauge link in
the gluon (adjoint) representation

[x, y] ≡ Pexp
{
ig

∫ 1

0
dt (x − y)µÃµ(tx + (1 − t)y)

}
.

(2.2)

The tensor structures for a decomposition over invariant
amplitudes may be built from two available 4-vectors
pα, zα and the metric tensor gαβ. Incorporating the an-
tisymmetry of Gρσ with respect to its indices, we have

Mµα;λβ(z, p) =(
gµλpαpβ − gµβpαpλ − gαλpµpβ + gαβpµpλ

)
Mpp

+
(
gµλzαzβ − gµβzαzλ − gαλzµzβ + gαβzµzλ

)
Mzz

+
(
gµλzαpβ − gµβzαpλ − gαλzµpβ + gαβzµpλ

)
Mzp

+
(
gµλpαzβ − gµβpαzλ − gαλpµzβ + gαβpµzλ

)
Mpz

+
(
pµzα − pαzµ

) (
pλzβ − pβzλ

)
Mppzz

+
(
gµλgαβ − gµβgαλ

)
Mgg , (2.3)

where the amplitudesM are functions of the invariant
interval z2 and the Ioffe time [28] (pz) ≡ −ν (the minus
sign is introduced for further convenience).

Since the matrix element should be symmetric with
respect to interchange of the fields (which amounts to
{µα} ↔ {λβ} and z → −z), the functions Mpp, Mzz,
Mgg, Mppzz and Mpz − Mzp are even functions of ν,
whileMpz +Mzp is odd in ν.

The usual light-cone gluon distribution is obtained
from gαβM+α;β+(z, p), with z taken in the light-cone
“minus” direction, z = z−. We have

gαβM+α;β+(z−, p) = −2p2
+Mpp(ν, 0) , (2.4)

i.e., the PDF is determined by theMpp structure,

−Mpp(ν, 0) =
1
2

∫ 1

−1
dx e−ixνx fg(x) . (2.5)

Thus, we should choose the operators with the sets
{µα; λβ} that containMpp in their parametrization.

Note that it is the density of the momentum
G(x) ≡ x fg(x) carried by the gluons rather than their
number density fg(x) that is a natural quantity in this
definition of the gluon PDF. In the local z− = 0 (or
ν = 0) limit, the x-integral gives the fraction of the
hadron’s plus momentum carried by the gluons. In the
absence of gluon-quark transitions, this fraction is con-
served, which puts a restriction on the gg-component of
the Altarelli-Parisi [29] kernel. Namely, it should have
the plus-prescription property when applied to G(x).

Due to antisymmetry of Gρσ with respect to its in-
dices, the values α = + and β = + are excluded from the
summation in Eq. (2.4). Furthermore, since g−− = 0,
the combination gαβM+α;β+(z, p) includes only summa-
tion over transverse indices i, j = 1, 2, i.e. reduces to
gi jM+i; j+(z, p) ≡ M+i;+i(z, p) (we switched here to Eu-
clidean summation over i), for which we have

M+i;+i = M0i;0i + M3i;3i + (M0i;3i + M3i;0i) . (2.6)

In the local z3 = 0 limit, these three combinations
are proportional to E2

⊥, B2
⊥ and the third component

(E × B)3 of the Poynting vector, respectively.
The decomposition of these combinations (with sum-

mation over i) in the basis of theM structures is

M0i;i0 =2p2
0Mpp + 2Mgg , (2.7)

M3i;i3 =2p2
3Mpp + 2z2

3Mzz

+ 2z3 p3

(
Mzp +Mpz

)
− 2Mgg , (2.8)

M0i;i3 =2p0

(
p3Mpp + z3Mpz

)
, (2.9)

M3i;i0 =2p0

(
p3Mpp + z3Mzp

)
. (2.10)

All of them contain the Mpp function defining the
gluon distribution, though with different kinematical
factors. Unfortunately, none of them is justMpp: they
all contain contaminating terms. Moreover, the M3i;i3
matrix element (proposed originally [4] for extractions
of the gluon PDF on the lattice) contains three contam-
inations, while the others have just one addition. In
particular, the matrix element M0i;i0 hasMgg as a con-
taminating term. It is easy to see that

M ji;i j ≡ 〈p|G ji(z)Gi j(0) |p〉 = −2Mgg , (2.11)

where the summation over both i and j is assumed.
Hence, the combination

M0i;i0 + M ji;i j =2p2
0Mpp (2.12)

may be used for extraction of the twist-2 functionMpp.
Combining together matrix elements of different

types, one should take into account that, off the light
cone, these matrix elements have extra ultraviolet diver-
gences related to presence of the gauge link. Due to the
local nature of ultraviolet divergences, each matrix el-
ement, for any set of its indices {µα; λβ}, is multiplica-
tively renormalizable with respect to these divergences
[30]. However, choosing different sets of {µα; νβ}, we
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get, in general, different anomalous dimensions.
Thus, it is not evident a priori which linear com-

binations of these matrix elements are multiplicatively
renormalizable. In Ref. [31], it was established that
the combinations represented in Eq. (2.6), namely,
M0i;i0, M3i;i3, M0i;i3 + M3i;i0 (and also M0i;i3 − M3i;i0),
with summation over transverse indices i, are each mul-
tiplicatively renormalizable at the one-loop level.

Furthermore, the combination Gi jGi j (with summa-
tion over transverse i, j) equals to 2G12G12, whose ma-
trix elements are multiplicatively renormalizable. As
we will see, it has the same one-loop UV anomalous di-
mension as M0i;i0, hence the combination of Eq. (2.12)
is multiplicatively renormalizable at the one-loop level.
A possible subject for further studies is to investigate if
this is true in higher orders.

The combination gαβM3α;3β, containing a covariant
summation over α and β, was also found to be multi-
plicatively renormalizable. It is given by

gαβM3α;3β =
(
2p2

3 − m2
)
Mpp + 3z2

3Mzz

+ 3p3z3

(
Mzp +Mpz

)
+ p2

0z2
3Mppzz − 3Mgg , (2.13)

and has the largest number (four) of contaminations.
The function gαβM0α;0β, also involving a covariant

summation, was used in the first attempt [32] of the
lattice extraction of the gluon PDF. However, as noted
in Ref. [31], it is not multiplicatively renormalizable.

In any theory with a dimensionless coupling con-
stant, the matrix elements M(z, p) contain ∼ ln

(
−z2

)
terms corresponding to perturbative (or “DGLAP”
for Dokshitzer-Gribov-Lipatov-Altarelli-Parisi [33, 29,
34]) evolution. One may wonder which combinations
have a diagonal DGLAP evolution at one loop.

To answer these questions, we have calculated the
modification of the original bilocal operator by one-
loop gluon exchanges.

3. Link self-energy contribution and ultraviolet di-
vergences

The simplest diagram corresponds to the self-energy
correction for the gauge link (see Fig. 1). Its calculation
is the same as in case of the quark bilocal operators
(see, e.g., Ref. [23]). At one loop, one should just the
change the color factor CF → CA. Thus, we have

ΓΣ(z) =(ig)2 CA
1
2

∫ 1

0
dt1

∫ 1

0
dt2 zµzν Dc

µν[z(t2 − t1)] ,

(3.1)

where Dc
µν(z) = gµν/4π2z2 is the Feynman-gauge gluon

propagator in the coordinate representation. The result-
ing integrals over the link parameters t1, t2∫ 1

0
dt1

∫ 1

0

dt2
(t2 − t1)2 (3.2)

z t1z t2z 0

Figure 1: Self-energy-type correction for the gauge link.

diverge when t1 ∼ t2, i.e., when the endpoints t1z and t2z
of the gluon propagator are close to each other. So, one
may suspect that this divergence has an ultraviolet ori-
gin. To see that this is the case, we use the dimensional
regularization (DR) [35] in the UV region, switching
to d dimensions. As a result, the gluon propagator in
the coordinate space acquires an extra factor (−z2)2−d/2.
This results in an extra (t2 − t1)2−d/2 factor in Eq. (3.2),
and the integral there converges for sufficiently small d.

To preserve gauge invariance, our calculations were
made using massless gluons and the dimensional regu-
larization. However, in the case of the link self-energy
diagram, the use of DR (which is basically just a mathe-
matical trick) is rather misleading in a couple of points.

The relevant subtleties may be illustrated by using
the Polyakov prescription 1/z2 → 1/(z2 − a2) for the
gluon propagator in the coordinate representation [36]
(see also Refs. [37, 23]). It softens the gluon propaga-
tor at intervals −z2 . a2, and eliminates its singularity
at z2 = 0. In this respect, it is similar to the UV regular-
ization produced by a finite lattice spacing, and gives

ΓΣ(z, a) = − g2 CA
z2

8π2

∫ 1

0
dt1

∫ 1

0

dt2
z2(t2 − t1)2 − a2 .

(3.3)

The regularized integral vanishes on the light cone
z2 = 0 and converges for spacelike z. Taking z = z3
and calculating the integrals gives [37, 23]

ΓΣ(z3, a) = −CA
αs

2π

 2
z3

a
tan−1

( z3

a

)
− ln

1 +
z2

3

a2

 .
(3.4)

The result contains a linear ∼ 1/a divergence that is
missed if one uses the DR. Furthermore, for a fixed a
and small z3 it behaves like z2

3/a
2, i.e., ΓΣ(z, a) vanishes

for z3 = 0, as expected: there is no link if z3 = 0. It also
vanishes on the light cone z2 = 0.

The fact that ΓΣ(z3 = 0, a) = 0 means that, for a
fixed a, this term gives no corrections to the local limit
of the Gµα(z) [z, 0] Gλβ(0) operator, e.g., to the energy-
momentum tensor (EMT). Since the matrix element of
the EMT gives the fraction of the hadron momentum
carried by the gluons, the link self-energy correction
does not change this fraction. This is a natural phe-
nomenon in the absence of the gluon-quark transitions.

However, if one formally takes the a → 0 limit for
a fixed z3 in Eq. (3.4), then ln

(
1 + z2

3/a
2
)

converts into
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the expression ln
(
z2

3/a
2
)

singular for z3 = 0. Similarly,
using the DR, one faces an outcome proportional to

(−z2µ2
UV)εUV/εUV = 1/εUV + ln

(
−z2µ2

UV

)
+ . . . , (3.5)

where µUV is the scale accompanying this UV dimen-
sional regularization. Again, the starting expression
vanishes for z2 = 0, but renormalizing it by a subtrac-
tion of the 1/εUV pole, one may apparently conclude
that, in addition to the UV divergence, this diagram
contains a singularity on the light cone z2 = 0.

For this reason, in our DR results we will explicitly
separate the z2-dependence induced by the UV singular
terms (that actually vanish on the light cone) and that
present in the DGLAP-evolution logarithms ln

(
−z2µ2

IR

)
,

where µIR is the scale associated with the DR regular-
ization of the collinear singularities.

The main difference is that if, instead of DR, one reg-
ularizes collinear singularities by using a physical IR
cut-off Λ (like nonzero gluon virtuality or gluon mass),
the one-loop result, proportional to the modified Bessel
function K0(

√
−z2Λ2), remains singular for z2 = 0, un-

like the UV-induced logarithm ln
(
1 − z2/a2

)
.

In the case of the link self-energy diagram, we
have UV singularities only. Its correction to the
Gµα(z)Gλβ(0) operator is given by

−
g2Nc

4π2[(−z2µ2
UV + iε)]

d
2−2

Γ
(
d/2 − 1

)
(3 − d)(4 − d)

Gµα(z)Gλβ(0) ,

(3.6)

where the 1/(3−d)(4−d) factor results from the integral∫ 1

0
dt1

∫ t1

0
dt2 (t1 − t2)2−d =

1
(3 − d)(4 − d)

produced by the DR of the gluon propagator
Dc(t1z − t2z). The pole for d = 3 (d = 4) corresponds to
the linear (logarithmic) UV divergence in Eq. (3.4).

4. Vertex contributions

There are also vertex diagrams involving gluons that
connect the gauge link with the gluon lines, see Fig. 2.

We use the method of calculation described in Ref.
[27]. It is based on the background-field technique,
with the gluon propagator taken in the “background-
Feynman” (bF) gauge [27]. It should be noted that the
three-gluon vertex in the bF gauge is different from the
usual Yang-Mills vertex (see e.g. [38]). Therefore, the
results obtained for separate diagrams in the bF gauge
differ from those obtained in the usual Feynman gauge
and only the sum of all diagrams must be the same.

4.1. UV divergent term

Clearly, the gluon exchange produces a correction
just to one of the fields in the Gµα(z)Gλβ(0) operator,
while another remains intact. In particular, the diagram
2a changes Gµα(z) into the sum of two terms. One of

0 0z z tztz

a) b)

Figure 2: Vertex diagrams with gluons coming out of the gauge link.

them contains UV divergences, while the other one is
UV finite.

The UV-divergent term is given by

Ncg2

8π2

Γ(d/2 − 1)
(d − 2)(−z2)d/2−1

∫ 1

0
du

(
u3−d − u

)
×

(
zαGzµ(ūz) − zµGzα(ūz)

)
, (4.1)

where Gzσ ≡ zρGρσ and ū ≡ 1 − u. The overall
d-dependent factor here is finite for d = 4, but the
u-integral diverges at the lower limit. Thus, just like in
the case of the link self-energy diagram, the divergence
appears in the integral over a dimensionless parameter
t specifying the location of the endpoint of the gluon
line on the gauge link. The divergence disappears if
one uses the UV regularization by taking d = 4− 2εUV,
which converts it into a pole at εUV = 0.

Since the ultraviolet divergence comes from the
u→ 0 integration, we can isolate it by taking ū = 1
in the gluonic field, which gives

Ncg2

4π2

Γ(d/2 − 1)
(d − 2)(−z2)d/2−1

(
1

4 − d
−

1
2

)
×

(
zαGzµ(z) − zµGzα(z)

)
. (4.2)

The remainder is given by

Ncg2

8π2

Γ(d/2 − 1)
(d − 2)(−z2)d/2−1

∫ 1

0
du

[
u3−d − u

]
+(0)

×
(
zαGzµ(ūz) − zµGzα(ūz)

)
, (4.3)

where the plus-prescription at u = 0 is defined as∫ 1

0
du

[
f (u)

]
+(0) g(u) =

∫ 1

0
du f (u)[g(u) − g(0)] .

(4.4)

At first sight, the field Gµα(z) = zαGzµ(z) − zµGzα(z)
accompanying the UV pole in Eq. (4.2) does not look
like the field Gµα(z) in the original operator. Thus, one
may worry that we are not dealing here with a multi-
plicative UV renormalization. So, let us perform an ex-
plicit check for our particular case when z = {0, 0, 0, z3}.

To begin with, we see that Gµα(z) = 0 when both
µ and α are transverse indices i, j. This corresponds
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to a multiplicative renormalization with the anomalous
dimension (AD) equal to zero.

Take now µ = 0. Then G0α(z) = zαGz0(z), so that
G0i(z) = 0 while G03(z) = z2

3G30(z) = −z2
3G03(z). Fi-

nally, if µ = 3, then G3α(z) = −z3Gzα(z) = −z2
3G3α(z),

which gives G3i(z) = −z2
3G3i(z) and G30(z) = −z2

3G30(z)
(same result as above).

Thus, for all the cases, Gµα(z) is a multiple of
Gµα(z). Namely, when one of the indices equals 3, we
have a nontrivial anomalous dimension, since G3α(z) =

−Gα3(z) = −z2
3G3α(z). In all other cases, we have a triv-

ial (vanishing) AD, since Gi j(z) = 0 and G0i(z) = 0.
As mentioned, the link self-energy diagram has both

linear and logarithmic UV divergences, while the ver-
tex diagrams have just logarithmic UV divergences.
Adding the logarithmic UV divergence coming from
the link self-energy to the UV divergences of the ver-
tex diagrams, we find, in particular, that the matrix ele-
ments M0i;i0 and Mi j;i j have the logarithmic AD due to
the link self-energy diagram only. Call it γ. Comparing
overall factors in Eqs. (3.6) and (4.2), we conclude that
M3i;i3 has the logarithmic AD equal to 2γ and matrix
elements M0i;i3 ± M3i;i0 have the logarithmic AD equal
to 3

2γ. In addition, all of these structures acquire at one
loop the same factor due to the linear UV singularity.

4.2. Evolution term

Our calculations show that the second, UV finite
term from the diagram 2a is given by

Ncg2

8π2

Γ(d/2 − 2)
(d − 3)(−z2)d/2−2

∫ 1

0
du

[
u3−d − 1

]
+(0)

×Gµα(ūz)Gλβ(0) . (4.5)

Note that the gluonic operator in Eq. (4.5) has the same
tensor structure as the original operator Gµα(z)Gβν(0)
differing from it just by rescaling z → ūz. There is
no mixing with operators of a different type. The u-
integral in this case does not diverge for d = 4, but the
overall Γ(d/2 − 2) factor has a pole 1/(d − 4).

Formally, there is also a pole 1/(d−3), corresponding
to a linear UV divergence. However, the singularity for
d = 3 is eliminated by the

[
u3−d − 1

]
combination in

the integrand. One may say that the linear divergences
present in “u3−d” and “−1” parts cancel each other.

In the calculation of Refs.[31, 18] performed using
the usual Feynman gauge, the linear singularities cancel
between contributions of two different diagrams shown
in Fig. 1 of Ref. [18]. In our calculation, based on the
bF gauge, the sum of these diagrams is represented by
just one vertex diagram, so that the cancellation occurs
inside the contribution (4.5) of that diagram.

The remaining 1/(d − 4) pole corresponds to a
collinear divergence developed because all the propaga-
tors correspond to massless particles. Taking a nonzero
gluon mass λ, one would get a finite result containing
K0(
√
−z2λ) (see, e.g., Ref. [23] for a discussion of the

quark vertex diagram in a similar context).

Still, K0(
√
−z2λ) is only finite as far as z2 is finite.

The IR cut-off does not eliminate the logarithmic singu-
larity ln

(
−z2λ2

)
that K0(

√
−z2λ) has on the light cone.

In the z = z3 case, z2
3 works like an ultraviolet cut-off

for this singularity. This may be contrasted with the UV
divergent contributions, where the UV cut-off is pro-
vided by the Polyakov regularization parameter a (or
lattice spacing aL) while z2

3 appears on the IR side of
the relevant logarithm ln

(
z2

3/a
2
)
.

5. Box diagram

There is also a contribution given by the diagram in
Fig. 3 containing a gluon exchange between two gluon
lines. This diagram does not have UV divergences, but
it has DGLAP ln z2

3 contributions. In contrast to the ver-
tex diagrams, the original Gµα(z)Gνβ(0) operator gener-
ates now a mixture of bilocal operators corresponding
to various projections of Gµα(ūz)Gνβ(0) onto the struc-
tures built from vectors p, z and the metric tensor g.

In particular, in the case of the original
〈p|G0i(z)G0i(0) |p〉 matrix element, the box di-
agram contribution is expressed through matrix
elements of 〈p|G0i(uz)G0i(0) |p〉, 〈p|G3i(uz)G3i(0) |p〉,
〈p|G30(uz)G30(0) |p〉 and 〈p|Gi j(uz)Gi j(0) |p〉 types.
All these matrix elements also appear in the box dia-
gram if one starts with the 〈p|G3i(z)G3i(0) |p〉 matrix
element. Thus, in both cases we have a complicated
mixing of different types of operators.

The situation is simpler for matrix elements

M±03(z, p) ≡ 〈p|G0i(z)Gi3(0) ±G3i(z)Gi0(0) |p〉 . (5.1)

Namely, for M+
03(z, p) (or M−03(z, p)) combination,

the box diagram contribution is expressed through
M+

03(uz, p) (or M−03(uz, p)) only. However,

M−03 ≡ M0i;i3 − M3i;i0 =2p0z3

(
Mpz −Mzp

)
. (5.2)

does not contain the twist-2 functionMpp, and is of no
interest. For M+

03(z, p), the box contribution is given by

Ncg2Γ(d/2 − 1)

4π2 (
−z2)d/2−2

∫ 1

0
du

(
ūu +

2
3

ū3
)

M+
03(uz, p)

+
Ncg2Γ(d/2 − 2)

4π2 (
−z2)d/2−2

∫ 1

0
du [ū(1 + u2) − u]M+

03(uz, p) .

(5.3)

z 0

Figure 3: Box diagram.
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Here, the Γ(d/2 − 2) terms are singular for d = 4,
which results in ln

(
−z2

)
terms generating the DGLAP

evolution. The Γ(d/2 − 1) terms are singular for d = 2,
which corresponds to the fact that the gluon propagator
in two dimensions has a logarithmic ln

(
−z2

)
behavior in

the coordinate space. For d = 4, these terms are finite.
Note that, unlike the vertex part, the box contribution
does not have the plus-prescription form.

6. Gluon self-energy diagrams

One may expect that the plus-prescription form
would appear after the addition of the gluon self-energy
diagrams, one of which is shown in Fig. 4a. These dia-
grams have both the UV and collinear divergences. On
the lattice, the UV divergence is regularized by the lat-
tice spacing. In a continuum theory, one may use the
Polyakov prescription 1/z2 → 1/(z2 − a2) for the gluon
propagator. The collinear divergences may be regular-
ized by taking a finite gluon mass λ. The result is a
ln

(
a2λ2

)
contribution. However, it does not have the

z-dependence, and apparently cannot help one to build
the plus-prescription form for the ln z2

3 part of the box
contribution.

A possible way out is to represent ln
(
a2λ2

)
as the dif-

ference ln
(
z2

3λ
2
)
− ln

(
z2

3/a
2
)

of the evolution-type loga-

rithm ln
(
z2

3λ
2
)

and a UV-type logarithm ln
(
z2

3/a
2
)
. The

latter can be added to the UV divergences of the di-
agrams 1 and 2 corresponding to link self-energy and
vertex corrections. The ln

(
z2

3λ
2
)

part is then added to
the evolution kernel.

To be on safe side with gauge invariance, we use
the dimensional regularization. Then the analog of the
ln

(
a2λ2

)
logarithm is a pole 1/(2 − d/2) sometimes

written as 1/εUV − 1/εIR. For our purposes, it is more
convenient to symbolically write it in a form similar
to ln

(
a2λ2

)
. Changing λ → µIR and a → 1/µUV we

get ln
(
µ2

IR/µ
2
UV

)
, and then split this into the difference

ln
(
z2

3µ
2
IR

)
− ln

(
z2

3µ
2
UV

)
.

We should also take into account the diagrams (one
of them is shown in Fig. 4b) with an extra gluon line go-
ing out of the link-gluon vertex. The combined contri-
bution of the Fig. 4 diagrams and their left-leg analogs
is given by

g2Nc

8π2

1
2 − d/2

[
2 −

β0

2Nc

]
Gµα(z)Gλβ(0) , (6.1)

z 0

a)

z 0

b)

Figure 4: Gluon self-energy-type insertions into the right leg.

where β0 = 11Nc/3 in gluodynamics, so that
the terms in the square bracket combine into 1/6.
As discussed above, we will treat 1/(2 − d/2) as
ln

(
z2

3µ
2
IR

)
− ln

(
z2

3µ
2
UV

)
.

7. DGLAP evolution structure

7.1. When DGLAP is diagonal in pure gluodynamics
The M+

03 ≡ M0i;i3 + M3i;i0 combination defined by Eq.
(5.1) contains the twist-2 amplitudeMpp,

M+
03 = 4p0 p3Mpp + 2p0z3

(
Mpz +Mzp

)
, (7.1)

though with a higher-twist admixture Mzp +Mpz. In
the local limit, the relevant operator is proportional to
the 3rd component of the Poynting vector

S3 = (E × B)3 = E1B2 − B1E2 = −(G01G13 + G32G20) .

As already mentioned, the box part of the one-loop
correction to the matrix element M+

03(z3, p) in pure glu-
odynamics has a simple DGLAP structure1 (5.3). Com-
bining all the gluon one-loop corrections to it, we get,
in the MS scheme,

g2Nc

8π2

∫ 1

0
du

{[(
3
2
−

1
6

)
ln

(
z2

3µ
2
UVe2γE/4

)
+ 2

]
δ(ū)

−2 log
(
z2

3µ
2
IRe2γE/4

) [ (1 − uū)2

ū

]
+

(7.2)

+

[
u − 3

u
ū
− 4

log(ū)
ū

]
+

+ 2
(
ūu +

2
3

ū3
)}

M+
03(uz, p) .

The first line here comes from the UV-singular con-
tributions. It contains the δ(ū) factor which reflects
the local nature of the UV divergences and converts
M+

03(uz, p) into M+
03(z, p). The second line contains the

Altarelli-Parisi (AP) kernel

Bgg(u) =2
[
(1 − uū)2

1 − u

]
+

. (7.3)

It has the plus-prescription structure reflecting the fact
that, in the local limit,Mpp(z, p) is proportional to the
matrix element of the gluon energy-momentum tensor.
From now on, “+” means the plus-prescription at 1.

The third line contains z3-independent terms com-
ing from the vertex diagrams (these have the plus-
prescription form) and from the box diagram. The latter
may be written as a sum of the term 2

(
ūu + 2

3 ū3
)
+

that
has the plus-prescription form and the term 2

3δ(ū) that
may be combined with the UV terms.

7.2. Reduced Ioffe-time distribution
The combination Mpz +Mzp is an odd function of

ν = z3 p3. Writing it as 2z3 p3m+
zp(ν, z2

3), we have

M+
03(z3, p) = 4p3 p0[Mpp(ν, z2

3) + z2
3 m+

zp(ν, z2
3)] . (7.4)

1This simplicity may be violated in higher orders.

6



Dividing out the kinematical factor 4p3 p0, we deal with

M̃pp(ν, z2
3) ≡ Mpp(ν, z2

3) + z2
3 m+

zp(ν, z2
3) , (7.5)

which is a function of ν and z2
3. Now, just like in the

quark case considered in Refs. [10, 12], we can intro-
duce the reduced Ioffe-time distribution

M̃(ν, z2
3) ≡

M̃pp(ν, z2
3)

M̃pp(0, z2
3)
. (7.6)

Since M̃pp(ν, z2
3) is obtained from the multiplica-

tively renormalizable combination M+
03, the UV di-

vergent Z(z2
3µ

2
UV ) factors generated by the link-related

and gluon self-energy diagrams cancel in the ratio
(7.6). As a result, the small-z2

3 dependence of the re-
duced pseudo-ITD M̃(ν, z2

3) comes from the logarithmic
DGLAP evolution effects only. Moreover, M̃pp(0, z2

3)
has no DGLAP logarithmic dependence on z2

3, because
of the plus-prescription nature of the AP kernel Bgg(u).

Thus, neglecting O(z2
3) terms, we conclude that, in

pure gluodynamics, M̃(ν, z2
3) satisfies the evolution

equation

d
d ln z2

3

M̃(ν, z2
3) = −

αs

2π
Nc

∫ 1

0
du Bgg(u)M̃(uν, z2

3)

(7.7)

with respect to z2
3. This relation is modified when

gluon-quark transitions are present.

7.3. Gluon-quark mixing
In the MS scheme, the contribution to M+

03 from the
gluon-quark diagram shown in Fig. 5 is given by

g2CF

4π2z3

∫ 1

0
du

[
2u − ln

(
z2

3µ
2
IRe2γE/4

)
[2ū + δ(ū)]

]
Oq(uz3) ,

(7.8)

where Oq(z3) is a singlet combination of quark fields,

Oq(z3) =
i
2

∑
f

(
ψ̄ f (0)γ0ψ f (z3) − ψ̄ f (z3)γ0ψ f (0)

)
,

(7.9)

with f numerating quark flavors. Note that Oq(z3) van-
ishes for z3 = 0. Expanding Oq(z3) in z3

Oq(z3) = z3
i
2

∑
f

ψ̄ f (0)γ0
↔

∂3ψ f (0) + O(z3
3) , (7.10)

we see that the lowest term is proportional to the quark
part of the energy-momentum tensor. This term is ac-
companied by the z3 factor which cancels the overall
1/z3 factor in Eq. (7.8).

The matrix element of Oq(z3) can be parametrized by

〈p|Oq(z3)|p〉 = 2p0
∫ 1

0
dx sin(xp3z3) qS (x) (7.11)

0z

Figure 5: Gluon-quark mixing diagram.

where fS (x) =
∑

f [q f (x) + q̄ f (x)] is the singlet quark
distribution. To extract the overall z3 factor, we rewrite

〈p|Oq(z3)|p〉 = 2p0 p3z3

∫ 1

0
dy

∫ 1

0
dα cos(αyν) y fS (y)

(7.12)

where ν = p3z3, as usual. This gives

1
z3

∫ 1

0
du A(u) 〈p|Oq(uz3)|p〉

= 2p0 p3

∫ 1

0
dwIS (wν)A(w) (7.13)

for u-integrals of Eq. (7.8) type. Here

IS (ν) =

∫ 1

0
dy cos(yν) y fS (y) (7.14)

is the singlet quark Ioffe-time distribution, and

A(w) =

∫ 1

w
du A(u) . (7.15)

For the evolution kernel Bgq(u) ≡ 2ū + δ(ū), we get

Bgq(w) =

∫ 1

w
du Bgq(u) = 1 + (1 − w)2 . (7.16)

7.4. Matching relations
A disadvantage of the M+

03(z3, p) combination is that
it vanishes when p3 = 0 (see Eq. (7.4)). Thus, to extract
M̃pp(ν, z2

3) for ν = 0, one should make measurements of
M+

03(z3, p) for a few low values of p3, divide p3 out, and
extrapolate the results to p3 = 0. This procedure leads
to additional systematic uncertainties.

Fortunately, the combination M0i;i0 − Mi j;i j =

2p2
0Mpp of Eq. (2.12), being proportional to p2

0, does
not have this problem. Furthermore, it gives the twist-2
amplitudeMpp without contaminations. The amplitude
Mpp(ν, z2

3) obtained in this way may be used to form the
reduced pseudo-ITDM(ν, z2

3), as in Eq. (7.6).
Another advantage of this choice comes from the fact

that the gluon-quark mixing term, due to Eq.(7.12), is
proportional to p3. Hence, it vanishes for p3 = 0, thus
making no contribution to the denominator factor built
for p3 = 0.

Using the results of our calculations for the one-
loop corrections to M0i;i0 and Mi j;i j, and keeping just
the Mpp term in the correction (while skipping the
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“higher twist” termsMzz,Mzp,Mpz,Mppzz) we obtain
the matching relation

M(ν, z2
3)Ig(0, µ2) = Ig(ν, µ2) −

αsNc

2π

∫ 1

0
duIg(uν, µ2)

×

{[
ln

(
z2

3µ
2e2γE/4

)
+ 2

]
Bgg(u) + 4

[
log(ū)

ū

]
+

+
2
3

[
1 − 6u − u3

]
+

}
−
αsCF

2π
ln

(
z2

3µ
2e2γE/4

)
×

p3

p0

∫ 1

0
dwIS (wν, µ2)Bgq(w) (7.17)

between the “lattice function” M(ν, z2
3) and the light-

cone ITDs Ig(ν, µ2) and IS (ν, µ2). The first of them is
related to the gluon PDF fg(x, µ2) by

Ig(ν, µ2) =
1
2

∫ 1

−1
dx eixν x fg(x, µ2) . (7.18)

Since x fg(x, µ2) is an even function of x, the real part of
Ig(ν, µ2) is given by the cosine transform of x fg(x, µ2),
while its imaginary part vanishes. The factor Ig(0, µ2)
has the meaning of the fraction of the hadron momen-
tum carried by the gluons, Ig(0, µ2) = 〈x〉µ2 .

Thus, Eq. (7.17) allows to extract the shape of the
gluon distribution. Its normalization, i.e., the value of
〈x〉µ2 should be found by an independent lattice calcu-
lation, similar to that performed in Ref. [39].

Substituting Eq. (7.18) into the matching condition
(7.17), we can rewrite the latter in the kernel form [26]

M(ν, z2
3) =

∫ 1

0
dx

x fg(x, µ2)
〈x〉µ2

Rgg(xν, z2
3µ

2)

+
p3

p0

∫ 1

0
dx

x fS (x, µ2)
〈x〉µ2

Rgq(xν, z2
3µ

2) , (7.19)

where the kernel Rgg(xν, z2
3µ

2) is given by

Rgg(y, z2
3µ

2) = cos y −
αs

2π
Nc

{[
ln

(
z2

3µ
2 e2γE+1

4

)
+ 2

]
RB(y)

+ RL(y) + RC(y)
}
, (7.20)

with RB(y) being the cosine Fourier transform of the
Bgg kernel

RB(y) =

∫ 1

0
du Bgg(u) cos(uy) . (7.21)

Its calculation is straightforward, and the result is ex-
pressed in terms of cos y, sin y and the integral cosine
Ci(y) and sine Si(y) functions. The latter come from the
1/(1 − u) part of B(u), which gives∫ 1

0
du

[
1

1 − u

]
+

cos(uy) = sin(y)Si(y)

+ cos(y) [Ci(y) − log(y) − γE] . (7.22)

Similarly, RL(y) is the cosine transform of the
4[(ln(1 − u)/(1 − u)]+ term. It is given by a hyperge-
ometric function

RL(y) = 4 Re
[
iyeiy

3F3(1, 1, 1; 2, 2, 2;−iy)
]
. (7.23)

The RC(y) and Rgq(y) kernels are given by the co-
sine transforms of 2

3

[
1 − 6u − u3

]
+

and 1 + (1 − u)2,
respectively. Expressions for them involve cos y, sin y
and inverse powers of y.

The important point is that the R(y, z2
3µ

2) kernels
are given by explicit perturbatively calculable expres-
sions. Using them and Eq. (7.19) one may directly re-
late M(ν, z2

3) and the light-cone PDFs. Then, assuming
some parameterizations for the fg(x, µ2) and fS (x, µ2)
distributions, one can fit their parameters and αs from
the lattice data for M(ν, z2

3) using Eqs. (7.19), (7.20).
This procedure is essentially the same as that used in
the “good lattice cross sections” approach [6, 7].

7.5. Matching relations for quasi-PDFs

The kernel relation (7.19) directly connects M(ν, z2
3)

with PDFs. So, there is no need to introduce interme-
diate functions, such as quasi-PDFs. Still, our results
for particular matrix elements, such as Eq. (7.2) for
M+

03(z3, p), may be used to get matching conditions for
quasi-PDFs. The latter are generically defined [4] as

Q(y, p3) =
p3

2π

∫ ∞

−∞

dz3M(z3, p) e−iyp3z3 . (7.24)

To proceed, one should write the amplitudes
M(z3, p) through the kernel relation (7.19) with
R(xν, z2

3µ
2) expressed in terms of p3 and z3, call it

J(x, p3, z3). The structure of its dependence on z3 at
one loop may be read off Eq. (7.2). For the gg part,

Jgg
1 (x, p3, z3) = γU ln z2

3 + CU

−

∫ 1

0
du

[
ln z2

3 Bgg(u) + C(u)
]

eiuxp3z3 . (7.25)

The 1-loop quasi-PDF matching kernel is then given by

Zgg
1 (y, x, p3) =

p3

2π

∫ ∞

−∞

dz3 Jgg
1 (x, p3, z3) e−iyp3z3 .

(7.26)

The CU and C(u) contributions of Jgg
1 (x, p3, z3) produce

CUδ(y − x) and C(u)δ(y − ux) terms. Hence, the re-
sulting parts of Q(y, p3) are visible in the “canonical”
0 ≤ y ≤ 1 region only. However, the terms with ln z2

3
give nonzero contributions in the y > 1 region as well,
namely

Zgg
1 (y, x, p3)|y>1 =

1
x

[
−
γU

η − 1
+

∫ 1

0
du

Bgg(u)
η − u

]
,

(7.27)

where η = y/x. Note that these contributions are com-
pletely determined by the AP kernel Bgg(u) and the

8



UV constant γU . Knowing them, one derives from
Eq. (7.27) a general constraint on the results for
Zgg

1 (y, x, p3)|y>1 obtained by any Feynman diagram cal-
culation. Using explicit form of Bgg(u), we find∫ 1

0
du

Bgg(u)
η − u

= 2
(1 − ηη̄)2

η − 1
ln
η − 1
η

+
11
6

1
η − 1

+ η(2η − 1) +
11
3
. (7.28)

For large η, this expression tends to zero as O(1/η2).
It should be stressed that such a behavior results from
any kernel B(u) that has the plus-prescription form.

This observation and the explicit expression given
by Eq. (7.28) may be used to check the gluon-gluon
matching kernels in Refs. [17, 18]. Our check shows
that Zgg

1 (y, x, p3)|y>1 corresponding to Eq. (64) of Ref.
[18] does not satisfy the constraint (7.27). The differ-
ence is by a constant term (-2/3) that leads to a linear
divergence in the integral of Zgg

1 (y, x, p3)|y>1 over y.

8. Summary.

In this paper, we have presented the results that form
the basis for the ongoing efforts to calculate gluon PDF
using the pseudo-PDF approach.

In particular, we gave a classification of possible
two-gluon correlator functions. We have identified
those of them that contain the invariant amplitude
Mpp(ν,−z2) that determines the gluon PDF in the light-
cone z2 → 0 limit. Since this limit is singular, one
needs the matching conditions that relateMpp(ν, z2

3) to
the light-cone PDF f (x, µ2).

To this end, using the method of Ref. [27], we
have performed calculations of the one-loop corrections
to the gauge-invariant correlator of two gluon field-
strength tensors, with all Lorentz indices explicit. To
preserve gauge invariance, we have used the dimen-
sional regularization.

Since the DR produces the same form ln z2
3µ

2 both
for logarithms related to the UV singularities and
for those reflecting the DGLAP evolution, we have
made an effort to separate these two sources of the
ln z2

3-dependence at small z2
3. When we form a re-

duced ITD M(ν, z2
3), the UV-related contributions are

canceled, and only the DGLAP-related terms remain in
the matching relation between the reduced ITD and the
light-cone ITD.

The matching relation may be also written in
a kernel form (7.19) that directly connects lattice
data on M(ν, z2

3) with the normalized gluon PDF
x fg(x, µ2)/〈x〉µ2 . The average gluon momentum frac-
tion 〈x〉µ2 needs to be extracted from a separate lattice
calculation.

We have also demonstrated that our results may be
used for a rather straightforward calculation of the one-
loop corrections to quasi-PDFs, providing new insights
concerning their structure that may be used to check the
results for the gluon quasi-PDF matching conditions.

In a future publication, we plan to present more de-
tails of our calculations, and to give a complete result
for the box diagram, in particular for the non-forward
kinematics that are needed in lattice calculations of dis-
tribution amplitudes and GPDs. We also plan to include
calculations for gluon-quark and quark-gluon terms.
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