Extraction of PDFs with one-loop matching and systematic effects
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We discuss extraction of PDF with one-loop matching and systematic effects modeling

I. DATA AND PSEUDO-PDF

Data (without error bars) for the ratio M(z, P)/M(z,0) are shown below for 6 momenta P = 1,2,3,4,5.6. The
data with z3 > 12a have been excluded.
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I will use in my fits normalized functions
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and their cosine transforms
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B(v;a,B) = /0 dz cos(vz) P(z,a, ) = oF3 <g + %,

The curve corresponds to B (v; a, B) for a = 0.35, 5 = 3.
To get a feeling about data at different z, I fit the data for fixed z using the functions B(v; «, 5 = 3).

For z =1, 1 get @« = —0.1836, for z = 2, I get a = —0.13226, for z = 3, I get o = —0.0685,
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for z =4, I get a = 0.00055, for z =5, I get o = 0.0747, for z =6, I get a = 0.12993 ,
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for =7, 1 get « =0.1995, for z =8, I get « = 0.2500, for z =9, I get a = 0.31785.
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for z =10, I get o = 0.3230, for z = 11, I get o = 0.2661 , for z = 12, I get o = 0.2120.
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In all cases, fits go reasonably close to data at that particular z. However, if the data with smaller z are also shown,
the picture is not so impressive.
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The change of « with z is shown below.
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Till z =9, it is well described by a straight line

a(z) = —0.2530 + 0.06366z ~ 0.06366(z — 4)
Which means that the data (for positive z3) are well described by the pseudo-PDF
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Naively, we can say that PDF f(z) is given by z3 = 0 extrapolation of this function, i.e., by
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We notice that the power a(z) decreases with z, as it should if we trust the AP evolution for pseudo-PDF. So, let
us see if this pattern of z-dependence is numerically compatible with the AP evolution equation. In any case, we need
to convert pseudo-PDF into MS-bar PDF, thus let us discuss the conversion from the pseudo-ITD to MS-bar ITD.

II. CHECKING EVOLUTION

Basic factorization formula given by OPE:
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To get “data points” for the MS-bar ITD, one should use
o 1
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Since Z(uv, u?) is also present on the rhs, we may proceed by iterations
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where Zy(v) is a (rough) fit of data for 91428 (1, 22) by a combination of functions B(v; a, 8) and
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As we have seen, M92t3(y, 22) is given by B(v;a(z3),3) with a(zz) = —0.2530 + 0.06366z3 and 3 = 3. For
—1<a<1,P(r;a,3) is a linear function of a with a good precision.
One can also check that, for small o we have the following relation
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Hence, we have

I(v, 4i?) = P(v;0,3) + a(z3)p(v) — 2.1;—; Crln (zg) p(v) + f(v, 1)

(v;0,3) + (a(z3) — 2.1C'F% In z3)p(v) + f(v, u)

where
o
oy (23) = a(z3) — 2.1C’F? Inzs 4+ f(v)/p(v, 1) ,
determines the zz-dependence of the “matched” ITD. In a more explicit form

Qv (23) = —0.2530 4+ 0.0636623 — 3% Inzs + f(v, 1) /p(v) ,

and it is clear that the “matched” ITD has z3-dependence, unfortunately. Still, the function ey (z3) has a minimum
for z3 ~ 4, and may be treated as a constant within +0.05 for 2 < z3 < 8.



IIT. CONVERTING TO PDF

Let us check these expectations by an explicit conversion to MS-bar I'TD.

I will use Zo(v) = B(;0.2,3), as/7 = 0.1 and u = 1/a = 2 GeV to get points for Z(v, u?). The results are shown
below for z up to 12.

Fitting the evolved data for each fixed z using B(v; a, 3), I get the following z-dependence in ae,. For z =1, I get
Qey = 0.2623, for z =2, I get a = 0.0981, for z = 3, I get a = 0.03135,
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For z =4, T get aey = 0.00692, for z =5, I get aey = 0.00931 , for z = 6, I get a, = 0.00816.
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As we can see, the powers a,, are rather close to each other, with the exception of z = 1 case. Continuing to higher
z, for 2 =7, 1 get aey = 0.03146, for z =8, I get ey = 0.04525 , for z = 9, I get aey = 0.0754.
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For z =10, I get aey, = 0.06327, for z = 11, I get ae, = —0.02827 , for z = 12, I get ae, = —0.08977.
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Now plot for aey(2)
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The curve shown on the left is a logarithmic fit for points with z < 9

Oev(2) = 0.1934 4 0.0666z — 0.3256 In = |,

which is in full agreement with the expression for ., (z) derived in the previous section. The points above z = 9
start to deviate from this pattern, but still are within £0.05 from the minimum of aey(z). Also, since large z’s are
involved, these points will have large error bars.

IV. SUMMARY

Thus, the original data show a very simple, practically linear dependence on z3 of the effective power a(z3).
Performing matching, we add In1/z3 terms to it, resulting in a function aey(23) having a minimum around z3 = 5a.
This produces an approximately constant £0.05 behavior of aey(23) in the region 2 < z3 < 8. This looks like an
approximate compliance with the AP evolution equation. However, for z5 = 1, we have ~ 0.25 deviation of aey(23)
from its minimum. Explanation is that even if In z3 can imitate a close to linear behavior for z3 > 2a, it cannot do it
everywhere.

The question is why the data do not show a logarithmic behavior in z3 in the region of small z3, where the
short-distance OPE is expected to work best?

A possible answer is that for z3 = a, the data may be affected by finite lattice spacing effects. In fact, we can fit
Qv (2) in another way, namely, using

Qev(2) = —0.043773 + 0.67523¢ %797 4+ 0.001432>

(see the right panel) and “explain” the curve by discretization effects described by e~%797#/@ and by a higher-twist
term 0.0014322. In the latter, the scale in 0.00143 22 /a® ~ 22 (80 MeV)? is small, so there are no large higher-twist
effects visible.

The fast fall-off of ¢=07972/¢ may be imitated by inverse powers (a/z)". Hence, adding such ad hoc terms in the
OPE, we can get a decent fit of the data.

The key lesson is that the lattice data does not show the expected In z behavior in the effective power a(z) (i.e.,
in the original data), and all the small-z peculiarities of the matched ITD are brought in by the Inz term in the
matching relation.

One may try to do a two-parameter fitting in o and 8, and see what will happen in that case. I think it is unlikely
that the basic observation 94ata (1, 22) = My(v) + 23 M (v) will change.

One may also try to improve the fitting of the data for a fixed z by using Ansiitze more complicated than z®(1—x)?,
which may somewhat improve 2. However, from what I see, the main reason for large x?2 is fitting the original data
by an expression containing In z in a situation when the data in fact do not show such a term.

It looks like the easiest way to improve x? is to throw out the z = 1 data from the fit.



