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We discuss extraction of PDF with one-loop matching and systematic effects modeling

I. DATA AND PSEUDO-PDF

Data (without error bars) for the ratio M(z, P )/M(z, 0) are shown below for 6 momenta P = 1, 2, 3, 4, 5.6. The
data with z3 > 12a have been excluded.
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I will use in my fits normalized functions

P (x, α, β) =
Γ(1 + α+ β)

Γ(1 + α)Γ(1 + β)
xα(1− x)β

and their cosine transforms

P(ν;α, β) =

∫ 1

0

dx cos(νx)P (x, α, β) = 2F3
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The curve corresponds to P(ν;α, β) for α = 0.35, β = 3.
To get a feeling about data at different z, I fit the data for fixed z using the functions P(ν;α, β = 3).

For z = 1, I get α = −0.1836, for z = 2, I get α = −0.13226, for z = 3, I get α = −0.0685,
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for z = 4, I get α = 0.00055, for z = 5, I get α = 0.0747, for z = 6, I get α = 0.12993 ,
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for z = 7, I get α = 0.1995, for z = 8, I get α = 0.2500, for z = 9, I get α = 0.31785.
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for z = 10, I get α = 0.3230, for z = 11, I get α = 0.2661 , for z = 12, I get α = 0.2120.
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In all cases, fits go reasonably close to data at that particular z. However, if the data with smaller z are also shown,
the picture is not so impressive.
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The change of α with z is shown below.
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Till z = 9, it is well described by a straight line

α(z) = −0.2530 + 0.06366z ≈ 0.06366(z − 4)

Which means that the data (for positive z3) are well described by the pseudo-PDF

P(x, z23) =
Γ(4 + α(z3))

3!Γ(1 + α(z3))
xα(z3)(1− x)3

Naively, we can say that PDF f(x) is given by z3 = 0 extrapolation of this function, i.e., by

f(x) =
Γ(4− 0.253)

3!Γ(1− 0.253)
x−0.253(1− x)3
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We notice that the power α(z) decreases with z, as it should if we trust the AP evolution for pseudo-PDF. So, let
us see if this pattern of z-dependence is numerically compatible with the AP evolution equation. In any case, we need
to convert pseudo-PDF into MS-bar PDF, thus let us discuss the conversion from the pseudo-ITD to MS-bar ITD.

II. CHECKING EVOLUTION

Basic factorization formula given by OPE:

Mdata(ν, z23) = I(ν,µ2)− αs
2π

CF

∫ 1

0

du I(uν, µ2)T (u, z23µ
2) ,

To get “data points” for the MS-bar ITD, one should use

I(ν,µ2) = Mdata(ν, z23) +
αs
2π

CF

∫ 1

0

du I(uν, µ2)T (u, z23µ
2) ,

Since I(uν, µ2) is also present on the rhs, we may proceed by iterations

I(ν,µ2) = Mdata(ν, z23) +
αs
2π

CF

∫ 1

0

du I0(uν)T (u, z23µ
2) ,

where I0(ν) is a (rough) fit of data for Mdata(ν, z23) by a combination of functions P(ν;α, β) and

T (u, z23µ
2) =

[
1 + u2

1− u

]
+

ln

(
z23µ

2 e
2γE+1

4

)
+

[
4 ln(1− u)

1− u
− 2(1− u)

]
+

As we have seen, Mdata(ν, z23) is given by P(ν;α(z3), β) with α(z3) = −0.2530 + 0.06366z3 and β = 3. For
−1 < α < 1, P(ν;α, 3) is a linear function of α with a good precision.

One can also check that, for small α we have the following relation∫ 1

0

duP(uν;α, 3)

[
1 + u2

1− u

]
+

≈ −2.1
∂

∂α
P(ν;α, 3) ≡ −2.1p(ν)

Hence, we have

I(ν, µ2) ≈ P(ν; 0, 3) + α(z3)p(ν)− 2.1
αs
2π

CF ln
(
z23
)
p(ν) + f(ν, µ)

= P(ν; 0, 3) + (α(z3)− 2.1CF
αs
π

ln z3)p(ν) + f(ν, µ)

≈ P(ν;αev(z3), 3) ,

where

αev(z3) ≈ α(z3)− 2.1CF
αs
π

ln z3 + f(ν)/p(ν, µ) ,

determines the z3-dependence of the “matched” ITD. In a more explicit form

αev(z3) ≈ −0.2530 + 0.06366z3 − 3
αs
π

ln z3 + f(ν, µ)/p(ν) ,

and it is clear that the “matched” ITD has z3-dependence, unfortunately. Still, the function αev(z3) has a minimum
for z3 ∼ 4, and may be treated as a constant within ±0.05 for 2 ≤ z3 ≤ 8.
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III. CONVERTING TO PDF

Let us check these expectations by an explicit conversion to MS-bar ITD.
I will use I0(ν) = P(ν; 0.2, 3), αs/π = 0.1 and µ = 1/a ≈ 2 GeV to get points for I(ν, µ2). The results are shown

below for z up to 12.
Fitting the evolved data for each fixed z using P(ν;α, 3), I get the following z-dependence in αev. For z = 1, I get

αev = 0.2623, for z = 2, I get α = 0.0981, for z = 3, I get α = 0.03135,

��� ��� ��� ��� ��� ��� ���

����

����

����

����

����

����

��� ��� ��� ��� ���

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ���

����
����
����
����
����
����
����

For z = 4, I get αev = 0.00692, for z = 5, I get αev = 0.00931 , for z = 6, I get αev = 0.00816.
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As we can see, the powers αev are rather close to each other, with the exception of z = 1 case. Continuing to higher
z, for z = 7, I get αev = 0.03146, for z = 8, I get αev = 0.04525 , for z = 9, I get αev = 0.0754.
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For z = 10, I get αev = 0.06327, for z = 11, I get αev = −0.02827 , for z = 12, I get αev = −0.08977.
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Now plot for αev(z)
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The curve shown on the left is a logarithmic fit for points with z ≤ 9

αev(z) = 0.1934 + 0.0666z − 0.3256 ln z ,

which is in full agreement with the expression for αev(z) derived in the previous section. The points above z = 9
start to deviate from this pattern, but still are within ±0.05 from the minimum of αev(z). Also, since large z’s are
involved, these points will have large error bars.

IV. SUMMARY

Thus, the original data show a very simple, practically linear dependence on z3 of the effective power α(z3).
Performing matching, we add ln 1/z3 terms to it, resulting in a function αev(z3) having a minimum around z3 = 5a.
This produces an approximately constant ±0.05 behavior of αev(z3) in the region 2 ≤ z3 ≤ 8. This looks like an
approximate compliance with the AP evolution equation. However, for z3 = 1, we have ∼ 0.25 deviation of αev(z3)
from its minimum. Explanation is that even if ln z3 can imitate a close to linear behavior for z3 > 2a, it cannot do it
everywhere.

The question is why the data do not show a logarithmic behavior in z3 in the region of small z3, where the
short-distance OPE is expected to work best?

A possible answer is that for z3 = a, the data may be affected by finite lattice spacing effects. In fact, we can fit
αev(z) in another way, namely, using

αev(z) = −0.043773 + 0.67523e−0.797z + 0.00143z2

(see the right panel) and “explain” the curve by discretization effects described by e−0.797z/a and by a higher-twist
term 0.00143z2. In the latter, the scale in 0.00143 z2/a2 ≈ z2 (80 MeV)2 is small, so there are no large higher-twist
effects visible.

The fast fall-off of e−0.797z/a may be imitated by inverse powers (a/z)n. Hence, adding such ad hoc terms in the
OPE, we can get a decent fit of the data.

The key lesson is that the lattice data does not show the expected ln z behavior in the effective power α(z) (i.e.,
in the original data), and all the small-z peculiarities of the matched ITD are brought in by the ln z term in the
matching relation.

One may try to do a two-parameter fitting in α and β, and see what will happen in that case. I think it is unlikely
that the basic observation Mdata(ν, z23) = M0(ν) + z3M1(ν) will change.

One may also try to improve the fitting of the data for a fixed z by using Ansätze more complicated than xα(1−x)β ,
which may somewhat improve χ2. However, from what I see, the main reason for large χ2 is fitting the original data
by an expression containing ln z in a situation when the data in fact do not show such a term.

It looks like the easiest way to improve χ2 is to throw out the z = 1 data from the fit.


