
Analysis note for transversity ITD in a = 0.094 fm ensemble

(Dated: June 23, 2021)

Abstract

Details of the analysis for the extraction of transversity PDF is collected together in this analysis

note.

I. ENSEMBLE DETAILS

The lattice size is 323×64. The lattice spacing is a = 0.094 fm; statistics is 349; Mπ = 358

MeV. The analysis is performed on ITD with momentum Pz = 2πnz/32 with nz = 0, 1, 2, 3.
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II. TRANSVERSITY ITD: DEFINITIONS

The lightcone transverse ITD defined in nucleon N with spin S = ST oriented in a spatial

direction µ̂ = T that is transverse to ±- directions

2P+STM(z−P+, µ) = 〈N,ST |ψ̄γ5γ+W+γT |N,ST 〉. (1)

The Euclidean pITD defined using nucleon moving along z-direction with its spin S in the

transverse x- or y-directions is

2ESTM(zPz, z
2) = 〈N ;Pz, ST |ψ̄γ5γtWzγT |N ;Pz, ST 〉. (2)

We will refer to the operator ψ̄γ5γtγkWzψ as Ok. This is obtained from a general Lorentz

decomposition for arbitrary spin S and momentum P , with S2 = −1, S.P = 0, for which

〈N ;P, S|ψ̄γ5γµγν |N ;P, S〉 = 2(PµSν − PνSµ)M(z.P, z2)

2im2
N(zµSν − zνSµ)N (z.P, z2)

2m2
N(zµPν − zνPµ)R(z.P, z2). (3)
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III. CONSTRUCTING THE CORRELATORS FROM REDSTAR HELICITY BA-

SIS

We will be extracting the required positive parity ground state matrix element from the

3pt function,

C3pt(ts, τ) =
〈
[N̄+]α(1 + γ5γk)

αβOk[N
+]β
〉
, (4)

where N+ = (1 + γt)N . The gamma matrix basis that is used is the Pauli-Dirac represen-

tation:

γt =

1 0

0 −1

 ; γk =

 0 σk

−σk 0

 ; γ5 =

0 1

1 0

 . (5)

In this basis, the spin projection operator acting on upper two components, [N+]α, for spin

S in the k-th direction Pk± = (1± γ5/S) = (1± γ5γk) becomes

Pk± = (1± σk). (6)

Writing

N+ =

Nz+

Nz−

 . (7)

Here (Nz+, 0) and (0, Nz−) are the ±1 eigenstates of Pz± respectively. In this convention,

the correlator we want is

Ck+,k+
3pt =

〈
N+Pk+OkPk+N

+
〉
. (8)

What is being stored in redstar at are the correlators

C±,±3pt =

〈N
+Pz±OkPz±N+〉 for Pz = 0

〈N+Px±OkPx±N+〉 for Pz 6= 0
. (9)

The ± indices are the ”rows” in the redstar files. We should linearly combine the above

components being stored in the data to get correlator we want. For Pz = 0, we can construct

Cx+,x+ = Cz+,z+ + Cz+,z− + Cz−,z+ + Cz−,z−,

Cy+,y+ = Cz+,z+ + iCz+,z− − iCz−,z+ + Cz−,z−,

Cz+,z+ = Cz+,z+. (10)

For Pz 6= 0, the useful combinations are

Cx+,x+ = Cx+,x+,

Cy+,y+ = Cx+,x+ − iCx+,x− + iCx−,x+ + Cx−,x−,

Cz+,z+ = Cx+,x+ + Cx+,x− + Cx−,x+ + Cx−,x−. (11)
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IV. MATCHING

The matching kernel for transversity ratio ITD is [Morris, Radyushkin in prep]:

M(ν, z2) =

∫ 1

0

duC(u, µ2z2)I(uν, µ), (12)

with

C(u, µ2z2) = δ(1− u)− αsCF
2π

{[
2u

1− u

]
+

log
(
z2µ2e2γE+1/4

)
+ 4

[
log(1− u)

1− u

]
+

}
. (13)

The normalization is such that 〈x0〉 = 1. For convenience in numerical implementation, we

rewrite the relation as

M(ν, z2) = 1 +
∑
n=1

〈xn〉(µ)cn(z2µ2)
(−iν)n

n!
. (14)

The coefficients cn are the Mellin moments of C(u, µ2z2), given by

cn(z2µ2) =

∫ 1

0

C(u, µ2z2)undu,

= 1− αsCF
2π

{
2(1−Hn+1) log

(
z2µ2e2γE+1/4

)
+

1

3

(
π2 + 6H2

n − 6ψ(1)(1 + n)
)}

. (15)
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V. EXTRACTION OF MATRIX ELEMENTS BY TWO-STATE FITS AND SUM-

MATION METHOD

We analyze the 2-pt function by fits to the spectral decomposition,

C2pt(ts) =
N−1∑
i=0

Aie
−Eits . (16)

We will use 1-state fits over ranges ts ∈ [tmin, 18a] with tmin > 8a, and 2-state fits over ranges

ts ∈ [tmin, 18a] for tmin = 2, 3, 4 respectively. With this, we obtain a jack-knife sample of fits

parameters Ai, Ei, which we input into the analysis of 3pt functions.

For the 3pt functions, we first form the ratio,

R(ts, τ) ≡ C3pt(ts, τ)

C2pt(ts)
, (17)

at different z and Pz. Two kinds of analysis is performed. In the fitting method, we fit the

spectral decomposition,

R(ts, τ) =

∑N−1
i,j=0MijAiA

∗
je
−Ei(ts−τ)+Ejτ∑N−1

i A2
i e
−Eits

. (18)

over the data spanning the range of ts ∈ [tmin, tmax] and τ ∈ [τ0, ts − τ0]. We denote this fit

as Fit(N, tmin, tmax, τ0). The fit parameters are Mij. In this note, we will restrict ourself to

Fit(2, tmin, 18, 2), with tmin = 6, 8.

In the summation method, we will compute

S(ts, τ0) =

ts−τ0∑
τ=τ0

R(ts, τ). (19)

In the fit of type Sum(tmin, tmax, τ0), we will fit S to straight line,

S(ts; τ0) = M00 + cts, (20)

over the data in ts ∈ [tmin, tmax]. In the plots shown, we will use Sum(6,18,2) and

Sum(8,18,2).

To estimate the ground state M.E. M00, we average over the results from the 2-state

fit extrapolation and the result from summation fit. This M00 is the bare ITD using Ok

operator (which uses γ5γtγk gamma structure), and will we call it MB
k (z, Pz).
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FIG. 1. The effective mass at different Pz are shown in different colors. The bands are the expected

ts dependence of Eeff from two-state fit over ts ∈ [3a, 18a].
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FIG. 2. The dispersion relation for ground state and 1st excited state from 2-state fits are shown.

For the ground state, the energies from the 2-state (ts ∈ [3a, 18a]) and 1-state (ts ∈ [10a, 18a]) are

shown. The solid curve is continuum single particle dispersion and the dashed curve is the lattice

single particle dispersion. These values of Ei will be used in the extrapolation of 3-pt functions.

7



−0.058

−0.056

−0.054

−0.052

−0.05

−0.048

−0.046

−0.044

−0.042

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 0

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.002

−0.001

0

0.001

0.002

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 0

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 0

Ats +B

−0.0009

−0.0008

−0.0007

−0.0006

−0.0005

−0.0004

−0.0003

−0.0002

−0.0001

0

0.0001

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 0

Ats +B
from 2-state

−0.05

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 2

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.045

−0.04

−0.035

−0.03

−0.025

−0.02

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 2

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 2

Ats +B
from 2-state

−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 2

Ats +B
from 2-state

−0.03

−0.02

−0.01

0

0.01

0.02

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 4

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 4

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 4

Ats +B
from 2-state

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 4

Ats +B
from 2-state

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 5

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.06

−0.04

−0.02

0

0.02

0 2 4 6 8 10 12 14

R
(t

s
,τ
;γ

5
γ
tγ

x
)

τ

z = 8a, nz = 5

ts = 4a
ts = 6a
ts = 8a
ts = 10a
ts = 12a
ts = 14a

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 0.05 0.1 0.15 0.2 0.25 0.3

t−
1

s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 5

Ats +B
from 2-state

−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0 0.05 0.1 0.15 0.2 0.25 0.3
t−

1
s
S
(t

s
;γ

5
γ
tγ

x
)

1/ts

z = 8a, nz = 5

Ats +B
from 2-state

FIG. 3. Determination of ground state bare matrix element at a sample point z = 8a at different

set of momenta, nz = 0, 2, 4, 5 in the four rows respectively. The first two panels show the 2-state

extrapolation of real and imaginary parts from the 3pt to 2pt ratio R. The third and the fourth

panels show the fits from the summation method for the real and imaginary parts respectively.
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VI. RENORMALIZATION

We renormalize via the RGI ratios. However, there are some choice here:

Choice-1 is to treat x and y directions independently:

Mk(zPz, z
2) ≡ M

B
k (z, Pz)

Mk(z, 0)
. (21)

Choice-2 making the rotational invariance to be exact:

M(zPz, z
2) ≡ M

B
x (z, Pz) +MB

y (z, Pz)

Mx(z, 0) +My(z, 0)
. (22)

We will make use of Choice-2 in order to explicitly impose all the expected symmetries.
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FIG. 4. The real (left) and imaginary (right) parts of the renormalized matrix elements using

two-state fit (red), summation fit (blue) and their average (black) at momenta nz = 1, 2, 3 .
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FIG. 5. The real (left) and imaginary (right) parts of the renormalized matrix elements using

two-state fit (red), summation fit (blue) and their average (black) at momenta nz = 4, 5, 6 .
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FIG. 6. The ITD is shown by putting together the data from all momenta differentiated by the

colors. In the top panel, the data with all available z are shown. In the bottom panel, only the

data with z ≤ 8a = 0.77 fm are shown.
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VII. EVIDENCES FOR THE SHORT-DISTANCE LATTICE CORRECTIONS

We look for the lattice corrections present in the lattice data by performing the OPE

w/o OPE analysis by fitting the data as a function of ν at different fixed z. From this we

extract the moments 〈xn〉, with the number of moments in the OPE as Nmax = 2, 4, 6. By

looking at the z dependence of 〈xn〉 we find evidences for the type of correction present to

the continuum twist-2 OPE. From Fig. 7, we find that the imaginary part suffers from aν/z

lattice correction, whereas there is no signal for any lattice correction present in the real

part. For 〈x3〉, the data is noisy enough that there is again no evidence for a aν3/z type

correction is seen. Therefore we will include a minimal correction of the form aν/z to both

the real and imaginary parts of the OPE.
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VIII. ANALYSIS BY FITTING MOMENTS AS FREE PARAMETERS

In this analysis, we fit the data to

ReM(ν, z2) = 1 +

(
Nmax∑

n=2,4,...

Cn(µ2z2)〈xn〉−
(−iν)n

n!

)
+
dra

z
ν2 + brz

2ν2,

ImM(ν, z2) = 1 +

(
Nmax∑

n=1,3,...

Cn(µ2z2)〈xn〉+
(−iν)n

n!

)
+
di
z
ν + biz

2ν. (23)

We fit up to 4 moments as free parameters each for real and imaginary parts in the analysis

where moments are free parameter. Later on, when we use fit ansatz, we will use up to 30

moments.
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FIG. 8. Fit to real and imaginary parts of the ITD based on fits to the moments.
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IX. ANALYSIS BY FITS USING THE 2-PARAMETER ANSATZ xα(1− x)β

We first fit the data by using the PDF Ansatze,

f± = N±xα±(1− x)β± . (24)

The values of (α±, β±) will be used as priors in the 4-parameter analysis.
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FIG. 10. Fits using two-parameter JAM ansatz. The data points are the rITD at various fixed

Pz. Only z < 0.77 fm are shown and used for the analysis shown (shorter zmax shown later). The

real and imaginary parts are in the left and right panels. The bands are the fits to moments.
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FIG. 11. The top panels show α−, β−, χ2/dof obtained from 2-parameter JAM fits to real-part of

ITD are shown. The bottom panels show α+, β+, χ
2/dof obtained from 2-parameter JAM fits to
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X. ANALYSIS BY FITS USING THE 4-PARAMETER ANSATZ

We fit the ITD data by using the PDF Ansatze,

f± = N±xα±(1− x)β±(1 + γ±
√
x+ δ±x). (25)

The fits were made using priors on (α±, β±) with the central-values of priors taken from the

corresponding 2-parameter fits with the same fit-ranges, and the prior-widths equal to their

1-σ statistical error in 2-parameter fits.

In doing such fits, f±(x) was decomposed into their Jacobi polynomial basis Pα±,β±
n (1−

2x). Through this, the means and errors on Jacobi basis components were obtained.
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FIG. 12. Fits using four-parameter JAM ansatz. The data points are the rITD at various fixed

Pz. Only z < 0.77 fm are shown and used for the analysis shown (shorter zmax shown later). The

real and imaginary parts are in the left and right panels. The bands are the fits to moments.

20



0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

With covariance

f −
(x
,µ

)

x

zmin, zmax

2,8
2, 10
3,8

3,10
LMPSS17

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

With covariance

f +
(x
,µ

)

x

zmin, zmax

2,8
2, 10
3,8

3,10

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

Without covariance

f −
(x
,µ

)

x

zmin, zmax

2,8
2, 10
3,8

3,10
LMPSS17

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

Without covariance
f +

(x
,µ

)

x

zmin, zmax

2,8
2, 10
3,8

3,10

FIG. 13. The top two panels show f−(x) reconstructed based on 4-parameter ansatz. The

top-left panel made of covariance matrix in the fits, and the top-right panel did not use it. In

each of the panels, the different colored bands show variations coming from changes in fit ranges

in z ∈ [zmin, zmax]. For f−(x), the result from (global fit+lattice gT ) from arXiv:1710.09858 are

shown by the black band, such that the area within the black band is 1. Similar plots are for f+(x)

are shown in the bottom panels.
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FIG. 14. The top set of panels show α−, β−, γ−, δ−, χ2/dof obtained from 4-parameter JAM fits

to real-part of ITD are shown. The values of α−, β− were constrained by priors, and no priors

on γ−, δ−. The bottom set of panels show α+, β+, γ+, δ+, χ
2/dof obtained from 4-parameter JAM

fits to imaginary-part of ITD are shown. The values of α+, β+ were constrained by priors, and no

priors on γ+, δ+.
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XI. FITS TO PDF USING JACOBI FUNCTIONS.

Refer to arxiv:2105.13313 for a complete description. The key points are

• The PDF is written as

f±(x) = xα±(1− x)β±
Nmax∑
n

s±nP
α,β
n (1− 2x). (26)

The choice of α± and β± are arbitrary. If Nmax = ∞, then it is exact. However, we

need to truncate Nmax to O(1).

•
∫ 1

0
xα(1− x)βPα,β

n (1− 2x)Pα,β
m (1− 2x)dx ∝ δn,m.

• With this, we can fit the ITD to

M(ν, z2) =
Nmax∑
n=0

snGn(z2, ν;α, β),

Gn(z2, ν;α, β) =
∞∑
k=1

(−iν)k

k!
ck(µ

2z2)

∫ 1

0

dxxα(1− x)βxkPα,β
n (1− 2x). (27)

XII. METHOD FOR THE JACOBI FITS

We chose a fixed α, β for the Jacobi basis from the central values of α±, β± from the

corresponding 4-parameter JAM fits. For the Jacobi polynomial components, we imposed a

prior equal to 3 × σstat of the components obtained by decomposing the 4-parameter JAM

fits. Then we varied the number of components to look for stability.

XIII. QUANTIFYING PERTURBATIVE UNCERTAINTY

In addition to fixing the value of αs(µ) at fixed value, we also performed an analysis

where we introduced a Gaussian noise in αs(µ) with 20% error. That is αs ∼ N (ᾱs, 0.2ᾱs).
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FIG. 15. Rationale for the convergence of Jacobi polynomial fits for functions that resemble

typical PDFs. From the 3-parameter JAM type fit to the real part, we found f(x) ∼ x0.3(6)(1 −

x)4.5(1.8)(1 + 3.1(4)
√
x). Here, we expand this function in terms of Jacobi polynomial in Eq. (26)

with same α and β from f(x), and ask how it converges as a function of truncation value of Nmax.

The plot shows the ”error” which is the difference between f(x) and Jacobi polymial expansion of

f(x) upto Nmax, for different Nmax. To compare, the error band in f(x) itself is enclosed between

the dashed black lines. It shows Nmax = 2 or 3 is sufficient for α ≈ 0.3 and β ≈ 4.
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FIG. 16. Fits using Jacobi polynomials upto order 6. The data points are the rITD at various

fixed Pz. Only z < 0.77 fm are shown and used for the analysis shown (shorter zmax shown later).

The real and imaginary parts are in the left and right panels. The bands are the fits to moments.
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FIG. 17. (PDF from fits with covariance matrix) The top two panels show f−(x) reconstructed

based on 4-parameter ansatz. A fixed value of αs = 0.3 was for matching in the top-left panel,

whereas αs ∈ N (0.3, 0.06) in the top-right panel. In each of the panels, the different colored bands

show variations coming from using order Njac = 4, 8 Jacobi basis and due to the changes in fit

ranges in z ∈ [zmin, zmax]. For f−(x), the result from (global fit+lattice gT ) from arXiv:1710.09858

are shown by the black band, such that the area within the black band is 1. Similar plots are for

f+(x) are shown in the bottom panels.
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FIG. 18. (PDF from fits without covariance matrix) The top two panels show f−(x) reconstructed

based on 4-parameter ansatz. A fixed value of αs = 0.3 was for matching in the top-left panel,

whereas αs ∈ N (0.3, 0.06) in the top-right panel. In each of the panels, the different colored bands

show variations coming from using order Njac = 4, 8 Jacobi basis and due to the changes in fit

ranges in z ∈ [zmin, zmax]. For f−(x), the result from (global fit+lattice gT ) from arXiv:1710.09858

are shown by the black band, such that the area within the black band is 1. Similar plots are for

f+(x) are shown in the bottom panels.
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FIG. 20. 3pt analysis for Pz = 0 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).

Appendix A: Extrapolations to get the matrix elements
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FIG. 21. Fit systematics for Pz = 0 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 22. 3pt analysis for Pz = 1 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 23. Fit systematics for Pz = 1 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 24. 3pt analysis for Pz = 2 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 25. Fit systematics for Pz = 2 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 26. 3pt analysis for Pz = 3 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 27. Fit systematics for Pz = 3 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 28. 3pt analysis for Pz = 4 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 29. Fit systematics for Pz = 4 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 30. 3pt analysis for Pz = 5 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 31. Fit systematics for Pz = 5 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 32. 3pt analysis for Pz = 6 and Oγ5γtγx . The different rows are analysis for specific values of

z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point

τ . Diff colors are for diff ts. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using

summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/ts which

is expected to behave as M00 + c/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).

40



−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

−10 −8 −6 −4 −2 0 2 4 6 8 10

M
B
(z
,P

z
;γ

5
γ
tγ

x
)

z/a

nz = 6

Fit(2,6,14,2)
Sum(6,14,2)

−0.6
−0.5
−0.4
−0.3
−0.2
−0.1

0

0.1

0.2

0.3

0.4

−10 −8 −6 −4 −2 0 2 4 6 8 10

M
B
(z
,P

z
;γ

5
γ
tγ

x
)

z/a

nz = 6

Fit(2,6,14,2)
Sum(6,14,2)

FIG. 33. Fit systematics for Pz = 6 and γ5γtγx matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements M00 from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 34. (Pz = 1, 2, 3) Renormalized matrix element using ”Choice-1” i.e., the operators Oγ5γtγx

(k=1) and Oγ5γtγy (k=2) are treated separately. The results from fit (Fit(2,6,14,2)) and summation

(Sum(6,14,2)) are compared. The results at +|z| and −|z| have not been symmetrized or anti-

symmetrized in the data. The summation method leads to more precise values of M after taking

double ratio in spite of errors in summation method being larger than in 2-state fits before taking

the double ratio; the reason being that the correlation between different shorted z being larger for

summation than for fit.
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FIG. 35. (Pz = 4, 5, 6) Renormalized matrix element using ”Choice-1” i.e., the operators Oγ5γtγx

(k=1) and Oγ5γtγy (k=2) are treated separately. The results from fit (Fit(2,6,14,2)) and summation

(Sum(6,14,2)) are compared. The results at +|z| and −|z| have not been symmetrized or anti-

symmetrized in the data. The summation method leads to more precise values of M after taking

double ratio in spite of errors in summation method being larger than in 2-state fits before taking

the double ratio; the reason being that the correlation between different shorted z being larger for

summation than for fit.
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FIG. 36. The renormalized ITD (using ”Choice-2”) has been shown as a function of ν = zPz. The

real and imag parts are on the left and right. The results using 2-state and summation method on

top and bottom panels. The results for ITD at fixed Pz are differentiated by color, and all z at

each Pz have been shown.
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