Analysis note for transversity ITD in a = 0.094 fm ensemble

(Dated: June 23, 2021)

Abstract

Details of the analysis for the extraction of transversity PDF is collected together in this analysis

note.

I. ENSEMBLE DETAILS

The lattice size is 322 x 64. The lattice spacing is a = 0.094 fm; statistics is 349; M, = 358
MeV. The analysis is performed on ITD with momentum P, = 27n,/32 with n, =0, 1,2, 3.



II. TRANSVERSITY ITD: DEFINITIONS

The lightcone transverse I'TD defined in nucleon N with spin .S = S7 oriented in a spatial

direction ji = T that is transverse to £- directions
2P, SpM(z_Py, 1) = (N, Sp[¢ysy: Wiyr|N, Sr). (1)

The Euclidean pI'TD defined using nucleon moving along z-direction with its spin .S in the

transverse - or y-directions is
2ESy M(2P,, 2*) = (N; P,, Sp|vysvWaryr|N; P,, St). (2)

We will refer to the operator ¥y5v7:W.% as O. This is obtained from a general Lorentz
decomposition for arbitrary spin S and momentum P, with $? = —1,S.P = 0, for which
(N; P, S|vvys57,70|N; P, S) = 2(P,S, — P,S,)M(2.P, 2°)
2im3 (2,5, — 2,9,)N (2.P, 2?)
2my (2, P, — 2,P,)R(2.P, 2%). (3)



III. CONSTRUCTING THE CORRELATORS FROM REDSTAR HELICITY BA-
SIS

We will be extracting the required positive parity ground state matrix element from the
3pt function,

Cpi (ts, 7) = ([NT]*(1 4+ 757) OR[N 1)) | (4)

where Nt = (14 +,)N. The gamma matrix basis that is used is the Pauli-Dirac represen-

tation:

10 0 o 01
Tt = 3 Ve = Y5 = . (5)
0 —1 —or 0 10
In this basis, the spin projection operator acting on upper two components, [N*]*, for spin

S in the k-th direction Py = (1 £ v58) = (1 & v57%) becomes

Writing
N,
N, _

Nt = (7)

Here (N,1,0) and (0, N,_) are the £1 eigenstates of P, respectively. In this convention,
the correlator we want is
Cyt™ = (NTPy Oy Pry NT) . (8)

What is being stored in redstar at are the correlators

C’?i’ti _ (NTP,LO P, NT) for P, =0 | ©
(NTP,+O P, NT) for P,#0

The =+ indices are the "rows” in the redstar files. We should linearly combine the above
components being stored in the data to get correlator we want. For P, = 0, we can construct

et — CEhet | OEhes L OFet L e

UVt — Pt | OFhaT Ot 0

Ot — ot (10)
For P, # 0, the useful combinations are

et — gutat

CQuHyt — cetat _joahes | joemat y gasas

Ortat = gebat | caebas | oaeat | caee (11)



IV. MATCHING

The matching kernel for transversity ratio ITD is [Morris, Radyushkin in prep]:

M(V,ZQ):/O duC (u, p*2*) I (uv, 1), (12)

with

Clu, 122?) = 6(1 — u) — O‘;? { Lzuu} ) log (%2> /4) + 4 [W] +} . (13)

The normalization is such that (z°) = 1. For convenience in numerical implementation, we
rewrite the relation as

(—iv)"

n!

M(v,2%) =14 (@) (w)en(Z0) (14)

The coefficients ¢, are the Mellin moments of C(u, u?z?), given by
1
nli) = [ Clu s
0

1 _ O[sC(F

- {2(1 — Hyy1)log (22pPe® =+ /4) + % (7 +6H2 — 6 (1 + n))} . (15)



V. EXTRACTION OF MATRIX ELEMENTS BY TWO-STATE FITS AND SUM-
MATION METHOD

We analyze the 2-pt function by fits to the spectral decomposition,

Copi(ts) = Y Aje it (16)

We will use 1-state fits over ranges ts € [tmin, 18a] with t,,;, > 8a, and 2-state fits over ranges
ts € [tmin, 18a] for tm = 2, 3,4 respectively. With this, we obtain a jack-knife sample of fits
parameters A;, E;, which we input into the analysis of 3pt functions.

For the 3pt functions, we first form the ratio,

CBpt (tsa T)
Cth (ts) ’

at different z and P.. Two kinds of analysis is performed. In the fitting method, we fit the

R(ts, 1)

(17)

spectral decomposition,

N-1 T )
R o Zi,j:O MZ]AZAJG El(t )+Ej
<t37 7_) ] Sy '
Z' Ale ils

]

(18)

over the data spanning the range of t5 € [tmin, tmax] and 7 € [79,ts — 70]. We denote this fit
as Fit(N, tmin, tmax, 70). The fit parameters are M;;. In this note, we will restrict ourself to
Fit(2, tynin, 18, 2), With tmim = 6, 8.

In the summation method, we will compute

ts—T0

S(tsim0) = Y Rlts, 7). (19)

T=T0

In the fit of type Sum(¢min, tmax, 70), we will fit S to straight line,
S(ts; o) = Moo + cts, (20)

over the data in ts € [tmin,fmax)- In the plots shown, we will use Sum(6,18,2) and
Sum(8,18,2).

To estimate the ground state M.E. My,, we average over the results from the 2-state
fit extrapolation and the result from summation fit. This My, is the bare ITD using Oy

operator (which uses v57,7 gamma structure), and will we call it MP(z, P,).



FIG. 1. The effective mass at different P, are shown in different colors. The bands are the expected

ts dependence of Eqg from two-state fit over ¢s € [3a, 18a).



04 ‘ ‘ ‘ ‘ ‘

FIG. 2. The dispersion relation for ground state and 1st excited state from 2-state fits are shown.
For the ground state, the energies from the 2-state (s € [3a,18a]) and 1-state (¢5 € [10a, 18a]) are
shown. The solid curve is continuum single particle dispersion and the dashed curve is the lattice

single particle dispersion. These values of F; will be used in the extrapolation of 3-pt functions.
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FIG. 3. Determination of ground state bare matrix element at a sample point z = 8a at different
set of momenta, n, = 0,2,4,5 in the four rows respectively. The first two panels show the 2-state
extrapolation of real and imaginary parts from the 3pt to 2pt ratio R. The third and the fourth

panels show the fits from the summation method for the real and imaginary parts respectively.



VI. RENORMALIZATION

We renormalize via the RGI ratios. However, there are some choice here:

Choice-1 is to treat x and y directions independently:

MB(z P,)
P, 2% = kA& 21
Ml 2) =70 2 0) (21
Choice-2 making the rotational invariance to be exact:
MB(z, P,) + MB(z, P,
M(zP,,2*) = —=F ( ) y ) (22)

M, (2,0) + M,y (2,0)

We will make use of Choice-2 in order to explicitly impose all the expected symmetries.
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FIG. 4. The real (left) and imaginary (right) parts of the renormalized matrix elements using

two-state fit (red), summation fit (blue) and their average (black) at momenta n, =1,2,3 .
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FIG. 6. The ITD is shown by putting together the data from all momenta differentiated by the
colors. In the top panel, the data with all available z are shown. In the bottom panel, only the

data with z < 8¢ = 0.77 fm are shown.
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VII. EVIDENCES FOR THE SHORT-DISTANCE LATTICE CORRECTIONS

We look for the lattice corrections present in the lattice data by performing the OPE
w/o OPE analysis by fitting the data as a function of v at different fixed z. From this we
extract the moments (z"), with the number of moments in the OPE as Ny, = 2,4,6. By
looking at the z dependence of (™) we find evidences for the type of correction present to
the continuum twist-2 OPE. From Fig. 7, we find that the imaginary part suffers from av/z
lattice correction, whereas there is no signal for any lattice correction present in the real
part. For (z%), the data is noisy enough that there is again no evidence for a av?/z type
correction is seen. Therefore we will include a minimal correction of the form av/z to both

the real and imaginary parts of the OPE.
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FIG. 7. The top panel shows the z-dependence of the (x) moment extracted as a function of z
by including 2,4,6 moments in the twist-2 OPE. The dashed line is the fit with (x) 4+ a/z which
translates to the presence of av/z type lattice correction. For comparison, the value of () from

2011.12787 is shown as the green band. The middle and the bottom panels show similar results

for (x?) and (x3) respectively.
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VIII. ANALYSIS BY FITTING MOMENTS AS FREE PARAMETERS

In this analysis, we fit the data to

N, :
max . n d
ReM(v, %) =1+ (Z Cu ) ) )+ AL
Ny (—iv)"\  d;
ImM(v,2%) =1+ ( Z Cn(u222)<x”>+—' + —v+ b2y (23)
n=1,3,.. s <

We fit up to 4 moments as free parameters each for real and imaginary parts in the analysis
where moments are free parameter. Later on, when we use fit ansatz, we will use up to 30

moments.
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FIG. 8. Fit to real and imaginary parts of the ITD based on fits to the moments.
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IX. ANALYSIS BY FITS USING THE 2-PARAMETER ANSATZ 2%(1 — z)”

We first fit the data by using the PDF Ansatze,
fi = Nea®=(1 — x)%%.

The values of (o, 54) will be used as priors in the 4-parameter analysis.

17
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X. ANALYSIS BY FITS USING THE 4-PARAMETER ANSATZ

We fit the ITD data by using the PDF Ansatze,
fie = Nea®: (1 — )P (1 + yev/T + 622). (25)
The fits were made using priors on (a4, f4) with the central-values of priors taken from the
corresponding 2-parameter fits with the same fit-ranges, and the prior-widths equal to their
1-0 statistical error in 2-parameter fits.
In doing such fits, fi(z) was decomposed into their Jacobi polynomial basis P+5%(1 —

2x). Through this, the means and errors on Jacobi basis components were obtained.
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FIG. 14. The top set of panels show a_,3_,v_,6_, x%/dof obtained from 4-parameter JAM fits
to real-part of ITD are shown. The values of a_,3_ were constrained by priors, and no priors
on y_,d_. The bottom set of panels show o, 4,7+, 0+, x?/dof obtained from 4-parameter JAM

fits to imaginary-part of I'TD are shown. The values of a, 5+ were constrained by priors, and no

priors on y4, 4.
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XI. FITS TO PDF USING JACOBI FUNCTIONS.

Refer to arxiv:2105.13313 for a complete description. The key points are

e The PDF is written as

Nrnax

fe(z) =2 (1 —2)™ Y srPr(1 - 2z). (26)

n

The choice of ay and B4 are arbitrary. If N,., = oo, then it is exact. However, we

need to truncate Nyax to O(1).
o f A1 —2)PP2P(1 — 22) PP (1 — 22)dx o< Gy

e With this, we can fit the ITD to

Nmax

an (2%, v;a, ),
n=0

o)

1
Gn(2,v;a, B) = 2)/ drx®(1 — ) 2" PP (1 — 2z). (27)
0

k=1
XII. METHOD FOR THE JACOBI FITS

We chose a fixed «, 8 for the Jacobi basis from the central values of a., S+ from the
corresponding 4-parameter JAM fits. For the Jacobi polynomial components, we imposed a
prior equal to 3 X oy, of the components obtained by decomposing the 4-parameter JAM

fits. Then we varied the number of components to look for stability.

XIII. QUANTIFYING PERTURBATIVE UNCERTAINTY

In addition to fixing the value of a,(u) at fixed value, we also performed an analysis

where we introduced a Gaussian noise in a,(p) with 20% error. That is a, ~ N (@, 0.2a,).
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FIG. 15. Rationale for the convergence of Jacobi polynomial fits for functions that resemble
typical PDFs. From the 3-parameter JAM type fit to the real part, we found f(z) ~ 20-36)(1 —
x)*(18)(1 + 3.1(4)y/z). Here, we expand this function in terms of Jacobi polynomial in Eq. (26)
with same a and 8 from f(z), and ask how it converges as a function of truncation value of Nyax.
The plot shows the ”error” which is the difference between f(x) and Jacobi polymial expansion of

f(x) upto Npax, for different Nyax. To compare, the error band in f(z) itself is enclosed between

the dashed black lines. It shows Ny.x = 2 or 3 is sufficient for @ = 0.3 and 3 = 4.
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FIG. 16. Fits using Jacobi polynomials upto order 6. The data points are the rITD at various

fixed P,. Only z < 0.77 fm are shown and used for the analysis shown (shorter zp,.x shown later).

The real and imaginary parts are in the left and right panels. The bands are the fits to moments.
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FIG. 17. (PDF from fits with covariance matrix) The top two panels show f_(z) reconstructed
based on 4-parameter ansatz. A fixed value of ay = 0.3 was for matching in the top-left panel,
whereas as € N'(0.3,0.06) in the top-right panel. In each of the panels, the different colored bands
show variations coming from using order Nj,. = 4,8 Jacobi basis and due to the changes in fit
ranges in 2 € [Zmin, Zmax)- For f_(z), the result from (global fit+lattice gr) from arXiv:1710.09858

are shown by the black band, such that the area within the black band is 1. Similar plots are for

f+(x) are shown in the bottom panels.
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FIG. 18. (PDF from fits without covariance matrix) The top two panels show f_(z) reconstructed
based on 4-parameter ansatz. A fixed value of ay = 0.3 was for matching in the top-left panel,
whereas as € N'(0.3,0.06) in the top-right panel. In each of the panels, the different colored bands
show variations coming from using order Nj,. = 4,8 Jacobi basis and due to the changes in fit
ranges in 2 € [Zmin, Zmax)- For f_(z), the result from (global fit+lattice gr) from arXiv:1710.09858

are shown by the black band, such that the area within the black band is 1. Similar plots are for
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f+(x) are shown in the bottom panels.
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FIG. 19. x?2/dof from the fits to the real (left) and imaginary (right) parts. The variations from

fit ranges and choice of lattice correction and number of Jacobi polynomials are shown.
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FIG. 20. 3pt analysis for P, = 0 and O.,,,,. The different rows are analysis for specific values of
z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point
7. Diff colors are for diff ¢;. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using
summation methods to real and imag parts; what is shown is S(¢5)/ts as a function of 1/t which
is expected to behave as My + ¢/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(t¢s)/ts from 2-state fit method Fit(2,6,18,2).

Appendix A: Extrapolations to get the matrix elements
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FIG. 21.

Fit systematics for P, = 0 and 577, matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements Mg from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 22. 3pt analysis for P, = 1 and O.,,,,. The different rows are analysis for specific values of
z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point
7. Diff colors are for diff ¢;. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using
summation methods to real and imag parts; what is shown is S(¢5)/ts as a function of 1/t which
is expected to behave as My + ¢/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(t¢s)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 23.

Fit systematics for P, = 1 and 7577y, matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements Mg from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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Fit systematics for P, = 2 and 7577, matrix element; Re part on top, Im part in the

bottom. For each z, results of extrapolated values of bare matrix elements Mg from different kinds

of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 26. 3pt analysis for . = 3 and O,,,,,. The different rows are analysis for specific values of
z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point
7. Diff colors are for diff ¢;. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using
summation methods to real and imag parts; what is shown is S(¢5)/ts as a function of 1/t which
is expected to behave as My + ¢/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(t¢s)/ts from 2-state fit method Fit(2,6,18,2).
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curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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of 2-state fit and summation fits are shown (and slightly displaced).
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FIG. 30. 3pt analysis for P. = 5 and O.,,,,. The different rows are analysis for specific values of
z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point
7. Diff colors are for diff ¢;. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using
summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/t; which
is expected to behave as My + ¢/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 32. 3pt analysis for P. = 6 and O.,,,,. The different rows are analysis for specific values of
z. Column-1 and 2 are for real and imaginary of ratio R as a function of operator insertion point
7. Diff colors are for diff ¢;. The bands are fits using Fit(2,6,18,2). Column-3 and 4 are fits using
summation methods to real and imag parts; what is shown is S(ts)/ts as a function of 1/t; which

is expected to behave as My + ¢/ts. The blue curve is the summation fit Sum(6,18,2). The green

curve is the expected curve for S(ts)/ts from 2-state fit method Fit(2,6,18,2).
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FIG. 34. (P. =1,2,3) Renormalized matrix element using ”Choice-1" i.e., the operators O~;,~,

(k=1) and O, (k=2) are treated separately. The results from fit (Fit(2,6,14,2)) and summation
(Sum(6,14,2)) are compared. The results at +|z| and —|z| have not been symmetrized or anti-
symmetrized in the data. The summation method leads to more precise values of M after taking
double ratio in spite of errors in summation method being larger than in 2-state fits before taking
the double ratio; the reason being that the corlzle21ation between different shorted z being larger for

summation than for fit.
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FIG. 35. (P, =4,5,6) Renormalized matrix element using ”Choice-1" i.e., the operators O~;,+,
(k=1) and O.;,, (k=2) are treated separately. The results from fit (Fit(2,6,14,2)) and summation
(Sum(6,14,2)) are compared. The results at +|z| and —|z| have not been symmetrized or anti-
symmetrized in the data. The summation method leads to more precise values of M after taking
double ratio in spite of errors in summation method being larger than in 2-state fits before taking
the double ratio; the reason being that the corlzle?}ation between different shorted z being larger for

summation than for fit.
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