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Referee report

The authors have addressed all the points in the previous report, and I appre-
ciate that my suggested changes have been implemented. Nevertheless, there
is still disagreement between us that may not be resolved here. Despite my
responses to the authors below, there is no point in delaying the publication
of the draft, so I recommend publication without further review.
Regarding at what range of z the perturbation theory is still valid, the

authors countered my point by arguing that: 1) perturbative corrections
remain small (. 0.1) for all range of ν considered; 2) the fitted higher-twist
terms are also small; 3) the actual physical scale in the matching kernel is
(1 − u)z, which makes it possible to go to larger value of z without hitting
the Landau pole.
The problem of Argument 1) is that the absolute size of O(αs) correction in

the ν or z space is not always a good indicator of perturbative convergence, as
it is not obvious how they are translated to the x space. Naively, one would
anticipate that the moderate x region is more stable, while the end-point
regions are more sensitive to even the slight ∼ 0.1 corrections in ν space.
Besides, regarding whether resummation is necessary, there is a paradox
following the authors’ argument. If perturbative corrections are small, then
one should expect that the fixed-order and resummed results are not much
different. However, if we do a resummation, then soon the perturbation
theory will break down as z becomes larger. Note that the resummmed
matching formula can explicitly preserve the ln z2 evolution even with the
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higher-twist terms included. Why should we ditch it and use fixed-order
formula for all the z considered?
One reason of the "smallness" of the perturbative correction, as more eas-

ily seen from the OPE, is that there is a cancelation of the MSbar Wilson
coefficient Cn and the C0 in the ratio scheme. Both fixed-order Cn and C0

grow very fast in z2, but their ratio is much milder. In the authors’ matching
formula, the matching kernel is equivalently obtained by doing a perturbative
expansion of ratio in αs. So here comes another question: if both Cn and C0

deviates far away from 1.0, how can one justify the expansion of the ratio
in αs? If there were a way to justify it to all orders in perturbation theory,
then resummation must be included.
In Argument 3), the authors raised an interesting point. In the OPE

formula, this corresponds to a resummation scale z/k where k � 1. While
I do not know the answer for the value of k, the bottom line is that i)
it can describe the data at all z considered, ii) the resummed pertubative
series converges well, iii) the choice of k should be universal, which means
that it works for the other matrix elements or hadron states. Apart from
these considerations, this point itself needs deeper understanding. The ln z2

corresponds to DGLAP evolution, whereas the ln(1−u) which is accompanied
by (1−u) in the denominator, is usually from the threshold logarithms. The
threshold logarithms satisfy a different RG equation, and their resummation
is different from the DGLAP logs. So without a further understanding of
the resummations, one cannot use this point as a proof of convergence of
perturbation series.
As for Argument 2), clearly the authors’ findings are irrefutable. My un-

derstanding is that this is a necessary condition to show that perturbation
theory still works, but not sufficient. My reason is related to the authors’
counter arguments to my point 4 in the last report.
Note that the matrix element considered here is a function in ν and z2,

and the dependence on ν is analytical at ν = 0 when z is finite. Therefore,
what the authors are doing here is to describe the z2 dependence of the
matrix elements that distinguish them from a universal “twist-2” curve in ν
that can be parameterized with orthonormal polynomial bases. At small z,
one may ignore the higher-twist contributions and test the ln z2 evolution; in
the large z region, however, the non-perturbative dependence on z2 become
important. It could well be that, given the precision of the data, either ln z2
evolution or some other model of z2 dependence can describe the data points.
In the authors’ counter example, they compared fits with the same model
with and without the ln z2 terms. This example may not be sufficient, as the
ln z2 terms can be compensated by some novel z2-dependent or higher-twist
terms. It could even be that the data satisfy a model in z2 that is totally
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different from the twist-expansion.
Since my previous and current reports are focused on the draft only, I

think it is best to leave the discussion on the other method, large momentum
effective theory, in a future context.

To summarize, I think the fundamental disagreement between the authors
and me is that when applying perturbation theory to data, should we treat
perturbation theory as a first-principles input, or, do we use data as an em-
pirical proof for the theory or as a constraint of the uncertainties in the
theory? This may sound philosophical, but in other areas I think the answer
is unequivocally the former. In perturbation theory, the power corrections
are always correlated with the uncertainties in the leading-power coefficient
functions. Without an accurate understanding of the leading-power coeffi-
cient functions as a priori, the estimates of the power corrections are at best
phenomenological. If one wants to make systematic improvement to such
calculations, one cannot avoid considering all the mentioned issues.

3


