PHYSICS SEMINAR

Niveditha Ram Stony Brook University

Validation of the Glauber Model in Asymmetric Heavy Ion Collisions in PHENIX

Abstract

Effects of strong nuclear force on collisions are studied by comparing them to p+p collisions. An important experimental observable is the nuclear modification factor (R_{AB}) . This is defined as

$$R_{AB}(P_t) = \frac{\left(\frac{d^2N}{P_t dP_t d\eta}\right)_{AB}}{N_{bin} * \left(\frac{d^2N}{P_t dP_t d\eta}\right)_{pp}} = \frac{Y(AB)}{N_{bin} * Y(pp)}$$

where Y(AB) is the yield of particle production in A+B collision, Y(pp) is the yield of particle production in p+p collision and N_{bin} is the number of binary collisions in heavy ion systems. One of the strongest evidence of formation of Quark Gluon Plasma (QGP) in heavy ion collisions is the suppression of R_{AB} of π^0 and the absence of suppression in direct photons. In recent years there has been growing evidence that indicate towards a possible formation of QGP even in small systems like p/d+Au collisions. Similar to Au+Au, the π^0 yield was suppressed in central, but, unlike in Au+Au, it was enhanced in peripheral collisions. There is no known physics mechanism to explain such enhancement. Instead of hypothesizing about new physics, my analysis asks a different question first: is the centrality classification and the Glauber model, as used in Au+Au, still valid in those very asymmetric heavy ion collisions? In this talk, I will be presenting my thesis work on High Pt, direct photon in d+Au collision to answer the above question.

Bluejeans meeting ID: https://bluejeans.com/520066403

May 28, 2021 1:00 p.m.