1

Constraints on the onset of color transparency from quasi-elastic ¹²C(e,e'p).

2	D. Bhetuwal, ¹ J. Matter, ² H. Szumila-Vance, ³ L. Kabir, ¹ D. Dutta, ¹ R. Ent, ³ D. Abrams, ² Z. Ahmed, ⁴
3	B. Aljawrneh, ⁵ S. Alsalmi, ⁶ R. Ambrose, ⁴ D. Androic, ⁷ W. Armstrong, ⁸ A. Asaturyan, ⁹ K. Assumin-Gyimah, ¹
4	C. Ayerbe Gayoso, ^{10,1} A. Bandari, ¹⁰ S. Basnet, ⁴ V. Berdnikov, ¹¹ H. Bhatt, ¹ D. Biswas, ¹² W. Boeglin, ¹³
5	P. Bosted, ¹⁰ E. Brash, ¹⁴ M. Bukhari, ¹⁵ H. Chen, ² J.P. Chen, ³ M. Chen, ² E.M. Christy, ¹² S. Covrig, ³
6	K. Cravcraft, ¹⁶ S. Danagoulian, ⁵ D. Dav, ² M. Diefenthaler, ³ M. Dlamini, ¹⁷ J. Dunne, ¹ B. Duran, ⁸ R. Evans, ⁴
7	H Fenker ³ N Fomin ¹⁶ E Fuchev ¹⁸ D Gaskell ³ T N Gautam ¹² F A Gonzalez ¹⁹ O Hansen ³
, o	F Hauenstein ²⁰ A V Hernandez ¹¹ T Horn ¹¹ G Huber ⁴ M K Jones ³ S Joosten ⁸ A Karki ¹
0	C Koppol ³ A Khapol ¹³ P King ¹⁷ F Kinpov ²¹ H S Ko ²² M Kohl ¹² N Lashlov Colthirst ¹² S Li ²³
9	W L: 10 A H Livenage 12 D Made ³ C Malage ³ D Markenvitz ¹³ D Madring ³ D Michaele ³ H Mintchuop ⁹
10	W. LI, A. H. Liyanage, D. Mack, S. Maiace, P. Markowitz, D. Meekins, R. Michaels, H. Mkrichyan,
11	S.J. Nazeer, S. Nanda, G. Niculescu, M. Niculescu, D. Nguyen, Nuruzzaman, B. Pandey,
12	S. Park, ¹⁵ E. Pooser, ⁵ A. Puckett, ¹⁶ M. Rehfuss, ⁵ J. Reinhold, ¹⁵ N. Santiesteban, ²⁵ B. Sawatzky, ⁵
13	G. Smith, ³ A. Sun, ²⁶ V. Tadevosyan, ⁹ R. Trotta, ¹¹ S. A. Wood, ³ C. Yero, ¹³ and J. Zhang ¹⁹
14	(for the Hall C Collaboration)
15	¹ Mississippi State University, Mississippi State, Mississippi 39762, USA
16	2 University of Virginia, Charlottesville, Virginia 22903, USA
17	³ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
18	⁴ University of Regina, Regina, Saskatchewan S4S 0A2, Canada
19	^o North Carolina A & T State University, Greensboro, North Carolina 27411, USA
20	^o Kent State University, Kent, Ohio 44240, USA
21	['] University of Zagreb, Zagreb, Croatia
22	^o Temple University, Philadelphia, Pennsylvania 19122, USA
23	¹⁰ Yerevan Physics Institute, 375036 Yerevan, Armenia
24	¹⁰ The College of William & Mary, Williamsburg, Virginia 23185, USA
25	¹² Hampton University of America, Wasnington, DC 20004, USA
26	nampion University, Hampion, Virginia 25009, USA ¹³ Florida International University, University, Park Florida 22100, USA
27	¹⁴ Christopher Newport University, Newport News, Virginia 23606, USA
20	¹⁵ Jazan University Jazan 15142 Saudi Arahia
30	¹⁶ University of Tennessee, Knowille, Tennessee 37996, USA
31	¹⁷ Ohio University, Athens, Ohio 45701, USA
32	¹⁸ University of Connecticut. Storrs. Connecticut 06269. USA
33	¹⁹ Stony Brook University, Stony Brook, New York 11794, USA
34	²⁰ Old Dominion University, Norfolk, Virginia 23529, USA
35	²¹ University of Colorado Boulder, Boulder, Colorado 80309, USA
36	²² Institut de Physique Nucleaire, Orsay, France
37	²³ University of New Hampshire, Durham, New Hampshire 03824, USA
38	²⁴ James Madison University, Harrisonburg, Virginia 22807, USA
39	²⁵ Rutgers University, New Brunswick, New Jersey 08854, USA
40	²⁰ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
41	(Dated: September 28, 2020)
42	Quasielastic ¹² C($e, e'p$) scattering was measured at momentum transfer squared $Q^2 = 8, 9.4,$
43	11.4, and 14.2 $(\text{GeV}/c)^2$, the highest ever achieved to date. Nuclear transparency for this reac-
44	tion was extracted by comparing the measured yield to that expected from a plane-wave impulse
45	approximation calculation without any final state interactions. The measured transparency was
46	observed to be independent of Q^2 , up to momentum scales where earlier $A(p, 2p)$ results had indi-
47	cated a rise in transparency, ruling out the quantum chromodynamics effect of color transparency
48	at such momentum scales. These results impose strict constraints on models of color transparency

for protons.

49

One of the dominant elements of the nuclear many 57 interactions can lead to the absorption and/or rescat-50 body problem governing the propagation of hadrons 58 51 through the nuclear medium is a "reduction of flux". 59 52 For example, in the quasielastic scattering of electrons 60 53 from a nucleus, A(e, e'p), the outgoing proton in the 61 reduction of the coincidence yield can be quantified 54 elementary ep elastic scattering can undergo final state e_2 in terms of the nuclear transparency (T), defined for 55 interactions (FSI) with the spectator nucleons. These ${}_{63}$ the A(e, e'p) process as the ratio of the measured to 56

tering of the outgoing proton resulting in the reduction of the measured A(e, e'p) yield, where the scattered electron and proton are detected in coincidence. This

the calculated Plane Wave Impulse Approximation₁₂₂ 64 (PWIA) yield. The PWIA yield is calculated in the123 65 absence of FSI as well as initial state interactions (ISI).124 66 Nuclear transparency for the A(e, e'p) process is then 125 67 the probability that the knocked-out proton escapes the₁₂₆ 68 nucleus without further interactions with the spectator₁₂₇ 69 nucleons. Thus, the measurement of T remains of active₁₂₈ 70 interest for insight into the nuclear many body problem₁₂₉ 71 and the strong interaction between hadrons and nuclei [1]₁₃₀ 72 131 73

At low energies, the strong interaction is well described¹³² 74 in terms of nucleons (protons and neutrons) exchanging¹³³ 75 mesons, whereas at high energies, perturbative Quantum¹³⁴ 76 Chromodynamics (pQCD) characterizes the strong force¹³⁵ 77 in terms of guarks and gluons carrying color charge.¹³⁶ 78 Although these two descriptions are well understood in¹³⁷ 79 their respective energy scales, the transition between¹³⁸ 80 them is not uniquely identified. Quantum Chromo-¹³⁹ 81 dynamics (QCD) predicts that protons produced in¹⁴⁰ 82 exclusive processes at sufficiently high momentum₁₄₁ 83 transfers (Q), will experience suppressed final (initial)₁₄₂ 84 state interactions resulting in a significant enhancement₁₄₃ 85 in the nuclear transparency [2]. This unique prediction₁₄₄ 86 of QCD is named color transparency (CT), and the₁₄₅ 87 observation of the onset of CT may help identify the₁₄₆ 88 transition between the two alternate descriptions of the_{147} 89 strong force. Measurement of T can therefore test for₁₄₈ 90 deviation from the expectations of conventional nuclear₁₄₉ 91 physics and the onset of quark-gluon degrees of freedom.₁₅₀ 92 93 151

Mueller and Brodsky [2] introduced CT as a direct¹⁵² 94 consequence of the concept that in exclusive processes153 95 at sufficiently high momentum transfer, hadrons are154 96 produced in a small point-like configuration (PLC).¹⁵⁵ 97 Quantum mechanics accounts for the existence of 156 98 hadrons that fluctuate to a PLC, and a high momentum¹⁵⁷ 99 transfer virtual photon preferentially interacts with a¹⁵⁸ 100 hadron in a PLC (with transverse size $r_{\perp} \approx 1/Q$).¹⁵⁹ 101 This phenomenon is sometimes referred to as "squeez-160 102 ing" [3]. The reduced transverse size, color neutral₁₆₁ 103 PLC is screened from external fields, analogous to a₁₆₂ 104 At high₁₆₃ reduced transverse size electric dipole [3]. 105 energies, due to relativistic time dilation (referred to as_{164} 106 "freezing"), the PLC maintains its compact size long₁₆₅ 107 enough to traverse the nuclear volume experiencing₁₆₆ 108 reduced interaction with the spectator nucleons. It 167 109 thereby experiences reduced attenuation in the nucleus₁₆₈ 110 due to color screening and the properties of the strong_{169} 111 force [3]. The onset of CT is thus a signature of QCD_{170} 112 degrees of freedom in nuclei and is expected to $\operatorname{manifest}_{171}$ 113 as an increase in T with increasing momentum transfer. ₁₇₂ 114 115 173

¹¹⁶ CT is well-established at high energies, see for example₁₇₄ ¹¹⁷ Ref. [1], but the energy regime for the onset of CT is₁₇₅ ¹¹⁸ less well known. In fact, the suppression of further₁₇₆ ¹¹⁹ interactions with the nuclear medium is a fundamental₁₇₇ ¹²⁰ assumption necessary to account for Bjorken scaling in₁₇₈ ¹²¹ deep-inelastic scattering at small x_B [4]. Moreover, the₁₇₉ onset of CT is of specific interest as it can help identify the relevant momentum transferred squared (Q^2) where factorization theorems are applicable [5] enabling the extraction of Generalized Parton Distributions (GPDs) [6, 7]. At intermediate energies, there exists a trade off between the selection of the PLC and its expansion as it transits the nucleus. Therefore the onset of CT is best observed at the intermediate energy regime where the expansion distance of the PLC becomes significant compared to the nuclear radius. Theory anticipates that it is more probable to observe the onset of CT at lower energies for meson production than for baryons as it is more probable to for quark-anti-quark pairs (mesons) to form a PLC than three quark systems (baryons) [8]. Additionally, the expansion distance over which the PLC fluctuates back to its equilibrium configuration, is larger than the nuclear radius at lower energies for mesons than for baryons [9].

The predicted onset of CT for final-state mesons has been demonstrated in several experiments at Jefferson Lab (JLab). Pion photoproduction cross section of ⁴He to ²H demonstrated deviations from Glauber that was consistent with CT theories showing a positive rise in the cross section ratio [10]. Precise and systematic studies of pion electroproduction on a range of targets established a positive slope in the transparency ratios for Q^2 in the range from 1–5 (GeV/c)², as well as an A-dependence of the slope. These results were found to be consistent with models that include CT [11, 12]. The onset of CT is mesons was further confirmed by a JLab experiment measuring the nuclear transparency of ρ^0 electroproduction which showed slopes vs Q^2 consistent with the same CT models [13] as the pions. While empirical evidence conclusively confirms the onset of CT in mesons at momentum scales corresponding to $Q^2 \sim 5$ $(GeV/c)^2$, the observation of the onset of CT in baryons is somewhat ambiguous.

In a pioneering experiment at the Brookhaven National Lab (BNL), the E850 collaboration attempted to measure the onset of CT using a large angle proton knockout A(p, 2p) reaction [14]. The nuclear transparency was measured as the ratio of the quasielastic cross section from a nuclear target to that of the free pp cross section. The transparency was measured as a function of an effective beam momentum, $P_{\rm eff}$, and was shown to have a positive rise, consistent with CT, from $P_{\rm eff}=5.9{\rm -}9~{\rm GeV/c}$ [14]. However, a subsequent decrease in the transparency was observed between $P_{\text{eff}} =$ 9.5–14.4 GeV/c that was not consistent with CT [15– 17]. This enhancement and subsequent fall in the nuclear transparency spans a Q^2 (Mandelstam -t) range of 4.8- $12.7 \, (\text{GeV/c})^2$ and outgoing proton momentum range of 3.3-7.7 GeV/c. Two possible explanations for the decrease in transparency at the higher momenta are; an in-medium suppression of the energy dependence of the pp elastic cross section known as nuclear filtering [18] [19],

or the excitation of charmed quark resonances or other237
 exotic multi-quark states [20].

239

272

In the A(p, 2p) reaction both the incoming and outgo-240 182 ing protons experience a reduction of flux making it more₂₄₁ 183 challenging to interpret. Consequently, the ambiguous²⁴² 184 results from the BNL experiment were investigated with243 185 the (e, e'p) process, which employs electrons, a weakly²⁴⁴ 186 interacting probe, to avoid the complication of the re-245 187 duction of flux of the hadronic probe. Further, compared²⁴⁶ 188 to the (p, 2p) process, the elementary ep scattering cross²⁴⁷ 189 section is accurately known and smoothly varying, and²⁴⁸ 190 the A(e, e'p) process is less sensitive to the poorly known₂₄₉ 191 large momentum components of the nuclear wave func-250 192 tion [21]. 193 251

Previous A(e, e'p) experiments [22–25] have measured²⁵² 194 the nuclear transparency of protons on a variety of nuclei²⁵³ 195 up to $Q^2 = 8.1 \, (\text{GeV/c})^2$. These experiments yielded²⁵⁴ 196 missing energy and momentum distributions consistent²⁵⁵ 197 with conventional nuclear physics and did not observe²⁵⁶ 198 any Q^2 dependence in the nuclear transparency. This²⁵⁷ 199 ruled out the onset of CT for protons at Q^2 values corre-258 200 sponding to outgoing proton momenta of 5 GeV/c, which 201 in some interpretations is just before the rise of trans-202 parency noted in the A(p, 2p) data. 203

The recent 12 GeV upgrade at Jefferson Lab allows 204 access to the entire Q^2 range and outgoing proton 205 momentum range of the BNL experiment for the first 206 time. It also allows significant overlap between the₂₅₀ 207 knocked out proton momentum in electron scattering 208 and the effective proton momentum quoted by the 209 BNL experiment A(p, 2p) experiment, within the range 210 where the enhancement in nuclear transparency was_{260} 211 observed [14]. These features make it possible to explore $_{261}$ 212 all possible variables $(Q^2, \text{ incident or outgoing proton}_{262})$ 213 momentum) that could be driving the said enhancement₂₆₃ 214 in transparency observed in the BNL experiment. In_{264} 215 this letter we report on the latest quasi-elastic $electron_{265}$ 216 scattering experiment to search for the onset of CT_{266} 217 at the upgraded JLab. This experiment extends the₂₆₇ 218 nuclear transparency measurements in ${}^{12}C(e, e'p)$ to the₂₆₈ 219 highest Q^2 to date and exhaustively covers the complete₂₆₉ 220 kinematic phase space of the enhancement observed by $_{270}$ 221 the BNL experiment. 222 271

The experiment was carried out in Hall C at JLab₂₇₃ 224 and was the first experiment to be completed in Hall C_{274} 225 after the upgrade of the continuous wave (cw) electron₂₇₅ 226 beam facility (CEBAF) accelerator. The experiment₂₇₆ 227 used the cw electron beam from the CEBAF accelerator₂₇₇ 228 with beam energies of 6.4 and 10.6 GeV and beam278 229 currents up to 65 μ A. The total accumulated beam₂₇₉ 230 charge was determined with < 1% uncertainty by a set₂₈₀ 231 of resonant cavity based beam current monitors and a281 232 parametric transformer monitor. The beam energy was₂₈₂ 233 determined with an uncertainty of 0.1% by measuring₂₈₃ 234 the bend angle of the beam, on its way into Hall-C, as₂₈₄ 235 it traversed a set of magnets with precisely known field₂₈₅ 236

223

integrals. The main production target was a carbon foils of 4.9% radiation lengths (rl), and a second carbon foil of 1.5% rl was used for systematic studies. The thickness of the foils were determined to better than 0.5%. A 10 cm long (726 mg/cm²) liquid hydrogen target was used for normalization to the elementary ep scattering process, and a 10 cm aluminum empty target was used to monitor the background from the aluminum end caps of the hydrogen target cell. The beam incident on the liquid hydrogen target was rastered over a 2×2 mm² area to suppress density variations from localized boiling.

The scattered electrons were detected in the existing High Momentum Spectrometer (HMS, momentum acceptance $\Delta p/p \pm 10\%$, solid angle $\Omega = 7$ msr) [24] in coincidence with the knocked out protons detected in the new Super High Momentum Spectrometer (SHMS, momentum acceptance $\Delta p/p$ from -10 to +12%, solid angle $\Omega = 4$ msr) [26]. The SHMS central angle was chosen to detect protons along the three momentum transfer, \vec{q} . The kinematics of the four different Q^2 settings are shown in Table I. The solid angle of the spectrometers was de-

TABLE I. Kinematics

$rac{\mathbf{Q}^2}{\left((\mathrm{GeV/c})^2 ight)^2}$	$ heta_{\mathbf{e}^{\prime}}^{lab}$ ²) (deg)	$p_{\mathbf{e}^{\prime}} (\mathbf{GeV/c})$	$ heta_{\mathbf{p}}^{lab} \ (\mathbf{deg})$	$p_{\mathbf{p}} (\mathbf{GeV/c})$	
8.0	45.1	2.125	17.1	5.030	
9.4	23.2	5.481	21.6	5.830	
11.4	28.5	4.451	17.8	6.882	
14.2	39.3	2.970	12.8	8.352	

fined for electrons and the coincident (e, e'p) process by a 2-in. thick heavymet (a tungsten alloy) collimator. The detector packages in the two spectrometers were similar, they included four planes of segmented scintillators (except for the last plane in SHMS which used quartz bars) that were used to form the trigger and to provide time of flight information. Two 6-plane drift chambers were used to measure particle tracks with better than $250 \text{-} \mu \text{m}$ resolution. The tracking efficiency was continuously monitored with an uncertainty of $\sim 0.1\%$ for the HMS and < 0.5% for the SHMS. The uncertainty was obtained from the average variation of the tracking efficiency when using three independent criteria for determining the efficiency. The typical momentum and angular resolution in the HMS (SHMS) were 0.2% (0.1%) for momentum, 0.8(0.9) mr for horizontal angle and 1.2(1.1)mr for the vertical angle. In the HMS a threshold gas Čerenkov detector and a segmented Pb-glass calorimeter were used for electron identification. The protons in the SHMS were identified using a noble gas threshold Cerenkov detector and a segmented Pb-glass calorimeter to reject pions. The pion-to-electron ratio in the HMS ranged from $\sim 10^{-1}$ to 10^{-3} , while the pion-to-proton ratio in the SHMS was always < 0.2. The corrections

for particle energy loss through the spectrometers were determined to better than 1%. The electron-proton coincidence events were recorded in 1-hour long runs via a pipelined data acquisition system operated using the CEBAF Online Data Acquisition (CODA) software package [27]. Singles (inclusive) electron and proton events were separately recorded for systematic studies.

The individual electron and proton tracks for each 293 coincidence event were reconstructed back to the target. 294 The coincidence time was determined as the difference 295 in the time of flight between the two spectrometers with 296 corrections to account for path length variations from 297 the central trajectory and the individual start times. 298 The coincidence time spectrum had a width of 380 ps, 299 sufficiently smaller than the 4-ns beam structure. The 300 rate of accidental coincidences was < 0.2%. 301

302

325

At each kinematic setting, the charge normalized ex-303 perimental yield for ep coincidences measured on the hy-304 drogen target, was compared to a parameterization of 305 the known ep elastic scattering cross section [28] through³⁴⁴ 306 a Monte Carlo simulation of the experiment [29] (see³⁴⁵ 307 Fig. 1). The simulation included a realistic model of the³⁴⁶ 308 spectrometer magnetic transport properties, the detailed³⁴⁷ 309 geometries of all the detectors and intervening materials,³⁴⁸ 310 and models for processes such as multiple scattering, ion-³⁴⁹ 311 ization energy loss and radiative effects. The experimen-³⁵⁰ 312 tal yield was corrected for detector and tracking ineffi-351 313 ciencies, computer and electronic dead-times and proton³⁵² 314 absorption in SHMS. The density of the liquid hydro-³⁵³ 315 gen target varies with the incident electron beam current³⁵⁴ 316 (beam boiling effect), and the experimental yield was cor-³⁵⁵ 317 rected for this effect. The correction was determined to $^{\rm 356}$ 318 be $(2.3\pm0.4)\%$ at the highest beam current (65 μ A). The³⁵⁷ 319 hydrogen yield was found to be consistent with the known³⁵⁸ 320 ep elastic scattering world data, validating the analysis³⁵⁹ 321 procedure. The comparison to the Monte Carlo yield³⁶⁰ 322 was used to determine the normalization uncertainty of^{361} 323 $\pm 1.8\%$. 324 363

The electron beam energy/momentum $(E_e/\vec{p_e})$ and 364 327 the energy/momentum of the scattered electron $(E_e/p_e)^{365}$ 328 measured by the HMS was used to determine $\vec{q} = \vec{p}_e - \vec{p}_{e'}^{7366}$ and the energy transfer $\nu = E_e - E_{e'}$ for each coincidence event. The kinetic energy $(T_{p'})$ and momentum $(\vec{p}_{p'})$ of ³⁶⁸₃₆₉ 329 330 331 knocked out protons measured in the SHMS was used³⁶⁹ 332 to determine the missing energy $E_m = \nu - T_{p'} - T_{A-1_{371}}^{370}$ and missing momentum $\vec{p}_m = \vec{p}_{p'} - \vec{q}$ for the coincidence 333 334 event, where T_{A-1} is the reconstructed kinetic energy³⁷² 335 of the A-1 recoiling nucleus. The experimental yield³⁷³ 336 on the ${}^{12}C$ target was obtained by integrating the 374 337 charge normalized coincidence events over a phase 338 space defined by $E_m < 80$ MeV and $|\vec{p}_m| < 300$ MeV/c.³⁷⁶ 339 These constraints eliminate inelastic contributions 340 such as from pion production and ensure exclusivity. 341 The experimental yield was corrected for all known 342 inefficiencies of both spectrometers such as the detector₃₇₇ 343

FIG. 1. The ratio of measured yield to the simulation (SIMC) yield is shown for elastic ep scattering from hydrogen for $E_m < 65$ MeV and $|p_m| < 65$ MeV/c. Only the statistical uncertainty are shown. The solid horizontal line is a fit to a constant value with the shaded band representing the the normalization uncertainty of 1.8% determined from these yield ratios and includes the ~1% variation in the ratio when the E_m and $|p_m|$ cuts are varied.

efficiencies (97% - 99%), trigger efficiency (98% - 99%), tracking efficiencies (99%-HMS and 94%-99%-SHMS). computer and electronic livetimes (94% - 99%), and proton absorption in the SHMS ($\sim 8\%$). The systematic uncertainty of the experimental yield arising from the event selection constraints for particle identification and on the spectrometer acceptance was determined by varying the constraints one at a time and recording the variation in yields over the different kinematic settings. The quadrature sum over all of the different types of constraints was used as the event selection uncertainty The uncertainty due to the livetime and $(\sim 1.4\%).$ the detector and trigger efficiencies was determined from a set of luminosity scans in each spectrometer performed immediately before and after the experiment on a ¹²C target. The charge normalized yield from these scans for each spectrometer was found to be independent of the beam current within statistical uncertainties, and the average variation in the normalized vield vs beam current was recorded as the systematic uncertainty (0.5%). The variation in the charge normalized experimental yield was <1% when using using all events with beam current above $5 \mu A$ or a more restrictive cut of $\pm 3 \ \mu A$ around the average current (for each interval with stable current). This validates the < 1% uncertainty estimated for the charge measurement.

A Monte Carlo simulation of the A(e, e'p) process was performed assuming the plane-wave impulse approximation (PWIA) to be valid, in which case the \vec{p}_m is equal to the initial momentum of the proton in the carbon nucleus, and the cross section is calculated in a factorized form as:

$$\frac{d^6\sigma}{dE_{e'}d\Omega_{e'}dE_{p'}d\Omega_{p'}} = E_{p'}|p_{p'}|\sigma_{ep}S(E_m,\vec{p}_m), \quad (1)$$

where $\Omega_{e'}$, $\Omega_{p'}$ are the solid angles of the outgoing elec-

tron and proton respectively, σ_{ep} is the off-shell ep cross 378 section and $S(E_m, \vec{p}_m)$ is the spectral function defined as 379 the joint probability of finding a proton with momentum 380 p_m and separation energy E_m within the nucleus. The 381 simulation used the De Forest σ_1^{cc} prescription [30] for 382 the off-shell cross section, and the simulated yield was 383 insensitive (< 0.1%) to the off-shell effect. The inde-384 pendent particle spectral functions used in the simula-385 tion were same as the ones used Ref. [22–25]. The effect 386 of nucleon-nucleon correlations, which causes the single 387 particle strength to appear at high E_m , was included by 388 applying a correction factor of 1.11 ± 0.03 as previously 389 determined in Ref. [31]. The simulated yield was ob-390 tained by integrating over the same phase space volume 391 as for the experimental data. The total model dependent 392 uncertainty due to the uncertainty in the model spec-417 393 tral function (2.8%) and the corrections due to nucleon-418 394 nucleon correlations, was estimated to be 3.9%. 419 395 420

396

397

402

FIG. 2. The missing momentum, p_m , for the Carbon data is 398 shown for each kinematic setting. (a) $Q^2 = 8.0$ (b) $Q^2 = 9.4_{427}^{426}$ (c) $Q^2 = 11.4$ and (d) $Q^2 = 14.2 \,(\text{GeV/c})^2$ 399 400 401 428 429

The ${}^{12}C(e, e'p)$ yields as a function of P_m are shown⁴³⁰ 403 in Fig 2, along with the simulated yields. The constraint⁴³¹ 404 of $E_m < 80$ MeV was applied to both data and simula-⁴³² 405 tion. The shape of the data and simulated distributions $^{\scriptscriptstyle 433}$ 406 agree with each other very well for all four Q^2 settings⁴³⁴ 407 validating the use of the impulse approximation. It also $^{435}_{436}$ indicated the robustness of the spectrometer models in 437 408 409 the Monte Carlo simulation. The uncertainty from the⁴³⁸ 410 spectrometer acceptance was estimated to be 2.6% by⁴³⁹ 411 comparing the measured and simulated focal plane posi-440 412 tions and angles as well as the reconstructed angles and⁴⁴¹ 413 momenta at the reaction vertex. The p_m distributions 414 shown in Fig. 2, are very sensitive to the reconstructed 415 momenta and angles, and the average bin-by-bin differ-416

TABLE II. Systematic Uncertainties

Source	Q^2 dependent uncertainty (%)
Spectrometer acceptance	2.6
Event selection	1.4
Tracking efficiency	0.5
Radiative corrections	1.0
Live time & Det. efficiency	0.5
Source	Normalization uncertainty (%)
Free cross section	1.8
Target thickness	0.5
Beam charge	1.0
Proton absorption	0.5
Total	3.9

ence between the data and simulated spectra normalized to each other was used as the systematic uncertainty due to acceptance. Table II lists the major sources of systematic uncertainty. The total uncertainty is calculated as the quadrature sum. The model dependent uncertainty is not included in the table.

FIG. 3. The carbon nuclear transparency from this experiment along with all previous experiments [22–25, 32]. The 4momentum transfer squared is shown along the x-axis (bottom scale), and the momentum of the knocked out proton is also shown along the top scale of the x-axis. The solid magenta line is a Glauber calculation that excludes color transparency effects [33]. The dashed lines are theory predictions including CT [34] for two different set of parameters and the solid blue line is a prediction from a relativistic Glauber calculation with CT [35]. The error bars show the statistical uncertainty while the band shows the systematic uncertainty. The additional model dependent uncertainty is not shown.

The nuclear transparency was extracted as the ratio of experimental yield to the PWIA yield integrated over the same phase space volume V:

$$T(Q^{2}) = \frac{\int_{V} d^{3} p_{m} dE_{m} Y_{exp}(E_{m}, \vec{p}_{m})}{\int_{V} d^{3} p_{m} dE_{m} Y_{PWIA}(E_{m}, \vec{p}_{m})},$$
 (2)

where V is the phase space volume as defined₄₆₅ 442 earlier, $Y_{exp}(E_m, \vec{p}_m)$ is the experimental yield and 466 443 $Y_{\rm PWIA}(E_m, \vec{p}_m)$ is the PWIA yield. The extracted nu-467 444 clear transparency as a function of Q^2 is shown in Fig. 3468 445 along with all previous measurements. The measured 469 446 nuclear transparency of carbon is found to be both en-470 447 ergy and Q^2 independent up to $Q^2 = 14.2 \,(\text{GeV/c})^2$,471 448 the highest accessed in quasi-elastic electron scattering₄₇₂ 449 to date. The combined data set from all measurements₄₇₃ 450 above $Q^2 = 3.0 \, (\text{GeV/c})^2$ was fit to a constant value with₄₇₄ 451 a reduced χ^2 of 1.3. The outgoing proton momentum of₄₇₅ 452 this experiment overlaps with the effective proton mo-476 453 mentum of the BNL experiments that reported an en-477 454 hancement in nuclear transparency[17]. Moreover, the478 455 Q^2 and outgoing proton momentum of this experiment₄₇₉ 456 is significantly higher than the BNL experiment. Hence,480 457 these results rule out CT as a possible cause of the rise in_{481} 458 transparency observed by the BNL experiment. The dif-482 459 ferences governing the observed onset of CT for mesons483 460 at Q^2 (outgoing meson momentum) scales of 1 (GeV/c)²₄₈₄ 461 (2.5 GeV/c) and the ruled-out onset of CT for protons at₄₈₅ 462 Q^2 (outgoing proton momentum) scales of 14 (GeV/c)²₄₈₆ 463 (8 GeV/c) may provide strong clues regarding the dif-487 464 100

ferences between two- and three-quark systems. Future experiments at JLab and elsewhere will further quantify such differences for pions, ρ -mesons and photons [36–38].

In summary, exclusive measurements were performed for Q^2 from 8–14.2 (GeV/c)² on hydrogen and carbon targets. The nuclear transparency extracted from these measurements are consistent with traditional nuclear physics calculation and do not support the onset of color transparency. The momentum scales accessed in this experiment rule out color transparency as the reason for a rise in transparency noted in A(p, 2p) data. The present results probe down to a transverse-size as small as ~0.05 fm in the three-quark nucleon system, placing very strict constraints on the onset of color transparency at intermediate energies and all current models.

This work was funded in part by the U.S. Department of Energy, including contract AC05-06OR23177 under which Jefferson Science Associates, LLC operates Thomas Jefferson National Accelerator Facility, and by the U.S. National Science Foundation. We wish to thank the staff of Jefferson Lab for their vital support throughout the experiment. We are also grateful to all granting agencies providing funding support to authors throughout this project.

- [1] D. Dutta, K. Hafidi, and M. Strikman. Color trans-517
 parency: past, present and future. Progress in Particle518
 and Nuclear Physics, 69:10, 2012. 519
- [2] A. H. Mueller. Proceedings of the Seventeenth Recontres20 de Moriond Conference on Elementary Particle Physics.521 Les Arcs, France, 1983.
- [3] S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller, 523
 and M. Strikman. *Phys. Rev. D*, 50:3134, 1994. 524
- 497 [4] L. Frankfurt and M. Strikman. Phys Rep., 160:235, 1988.525
- ⁴⁹⁸ [5] M. Strikman. Nucl. Phys. A, 663-664:64c-73c, 2000. ⁵²⁶
- ⁴⁹⁹ [6] X. Ji. Phys. Rev. Lett., 78:610, 1997.
- [7] A. V. Radyushkin. Phys. Rev. D, 56:5524–5557, Nov528
 1997. 529
- [8] M. Eides, L. Frankfurt, and M. Strikman. *Phys. Rev. D*,530
 59:114025, 1999.
- [9] M. Vanderhaeghen, P. A. M. Guichon, and M. Guidal.532
 Phys. Rev. D, 60:094017, 1999. 533
- ⁵⁰⁶ [10] D. Dutta et al. *Phys. Rev. C*, 68:021001R, 2003.
- ⁵⁰⁷ [11] B. Clasie et al. *Phys. Rev. Lett.*, 99:242502, 2007.
- ⁵⁰⁸ [12] X. Qian et al. *Phys Rev. C*, 81:055209, 2010.
- ⁵⁰⁹ [13] L. El-Fassi et al. *Phys. Lett. B*, 712:326, 2012.
- ⁵¹⁰ [14] A. S. Carroll et al. *Phys. Rev. Lett.*, 61:1698, 1988.
- ⁵¹¹ [15] I. Mardor et al. *Phys. Rev. Lett.*, 81:5085, 1998.
- ⁵¹² [16] A. Leksanov et al. *Phys. Rev. Lett.*, 87:212301, 2001. ⁵⁴⁰
- ⁵¹³ [17] J. Aclander et al. Phys. Rev. C, 70:015208, Jul 2004. ⁵⁴¹
- ⁵¹⁴ [18] J. P. Ralston and B. Pire. Phys. Rev. Lett., 61:1823, 1990.⁵⁴²
- [19] B. Kundu, J. Samuelsson, P. Jain, and J. P. Ralston.543
 Phys. Rev. D, 62:113009, 2000.

- [20] S. J. Brodsky and G. F. de Teramond. Phys Rev. Lett., 60:1924, 1988.
- [21] G. R. Farrar, H. Liu, L. L. Frankfurt, and M. I. Strikman. *Phys. Rev. Lett.*, 62:1095, 1989.
- [22] N. C. R. Makins et al. Phys. Rev. Lett, 72:1986, 1994.
- [23] T. G. O'Neill et al. Phys. Lett., 351:87, 1995.
- [24] D. Abbott et al. Phys. Rev. Lett., 80:5072, 1998.
- [25] K. Garrow et al. Phys. Rev. C, 66:044613, 2002.
- [26] The SHMS spectrometer in Hall-C. *publication in preparation*.
- [27] https://coda.jlab.org/drupal/.

527

534

535

536

537

538

539

- [28] P. Bosted. Phys. Rev. C, 51:409, 1995.
- [29] https://hallcweb.jlab.org/simc/.
- [30] T. De Forest. Nucl. Phys. A, 392(2):232 248, 1983.
- [31] T. G. O'Neill. PhD thesis, California Institute of Technology (unpublished), 1994.
- [32] G. Garino et al. Phys. Rev. C, 45:780, 1992.
- [33] V. R. Pandharipande and S. C. Pieper. Phys. Rev. C, 45:791, 1992.
- [34] L. L. Frankfurt et al. Phys. Rev. C, 51:3435, 1995.
- [35] W. Cosyn, M. C. Martinez, J. Ryckebusch, and B. Van Overmeire. *Phys. Rev. C*, 74:062201(R), 2006.
- [36] D. Dutta, R. Ent, K. Garrow, et al. Proposal for JLab experiment E01-107.
- [37] K. Hafidi, B. Mustapa, M. Holtrop, et al. Proposal for JLab experiment E12-07-103.
- [38] A. Somov, O. Hen, et al. Proposal for JLab experiment PR12-17-007.