Beam 0000 Hall-D Detector

Status of Hall-D tagged photon beam facility and the GlueX detector.

Benedikt Zihlmann On behalf of the GlueX collaboration

DIS 2012, Bonn 1 / 17 Introduction • 0 0 0 0 0 Jefferson Lab Beam 0000 Hall-D Detector

Light Meson Spectroscopy

2-fermion system $q\overline{q}$ with $^{(2S+1)}L_J$

Quantum Numbers

- S = 0, 1 and L = 0, 1, 2, ...
- J^{PC} with J = L 1, L, L + 1 and
 - $P = (-1)^{(L+1)}$ and $C = (-1)^{(L+S)}$
- $0^{++} = {}^{3}P_{0}$ (Vacuum)

Introduction • 0 0 0 0 0 Jefferson Lab Beam 0000 Hall-D Detector

GLUE Citations

Light Meson Spectroscopy

2-fermion system $q\overline{q}$ with $^{(2S+1)}L_J$

=> S = 1

Quantum Numbers

- S = 0, 1 and L = 0, 1, 2, ...
- J^{PC} with J = L 1, L, L + 1 and $P = (-1)^{(L+1)}$ and $C = (-1)^{(L+S)}$
- $0^{++} = {}^{3}P_0$ (Vacuum)

Quark Degrees of Freedom ONLY

 Introduction • 0 0 0 0 0 Jefferson Lab Beam 0000 Hall-D Detector

GLUE

Light Meson Spectroscopy

2-fermion system $q\overline{q}$ with $^{(2S+1)}L_J$

 J^{--} and J^{++} C = P=> S = 1 States 0^{+-} , 1^{-+} , 2^{+-} , ... need additional degree of freedom!

Quantum Numbers

- S = 0, 1 and L = 0, 1, 2, ...
- J^{PC} with J = L 1, L, L + 1 and $P = (-1)^{(L+1)}$ and $C = (-1)^{(L+S)}$
- $0^{++} = {}^{3}P_0$ (Vacuum)

Quark Degrees of Freedom ONLY J^{PC} Exotic quantum numbers

Beam 0000 Hall-D Detector

Additional Degrees of Freedom

EXOTIC Mesons:

- $q\overline{q} q\overline{q}$ More quarks: Molecule
- qqq Additional Gluon: Hybrid-Meson
- ggg Only Gluons: Glueballs

Beam

Hall-D Detector

Additional Degrees of Freedom

EXOTIC Mesons:

- $q\overline{q} q\overline{q}$ More quarks: Molecule
- qqq Additional Gluon: Hybrid-Meson
- ggg Only Gluons: Glueballs

HYBRID-Meson:

S = 0, L = 0, m = 1

$$J^{PC} = 1^{++}, 1^{--}$$

not exotic states

Beam 0000 Hall-D Detector

Additional Degrees of Freedom

EXOTIC Mesons:

- $q\overline{q} q\overline{q}$ More quarks:Molecule
- qqq Additional Gluon: Hybrid-Meson
- ggg Only Gluons: Glueballs

HYBRID-Meson:

S = 0, L = 0, m = 1

 $J^{PC} = 1^{++}, 1^{--}$

not exotic states exotic states require $S \neq 0$

$$S = 1, L = 0, m = 1$$

$$J^{PC} = \begin{array}{c} 0^{-+} & 0^{+-} \\ 1^{-+} & 1^{+-} \\ 2^{-+} & 2^{+-} \end{array}$$

DIS 2012, Bonn 3/17

Beam 0000 Hall-D Detector

Additional Degrees of Freedom

EXOTIC Mesons:

- $q\overline{q} q\overline{q}$ More quarks:Molecule
- qqq Additional Gluon: Hybrid-Meson
- ggg Only Gluons: Glueballs

HYBRID-Meson:

S = 0, **L** = 0, **m** = 1

 $J^{PC} = 1^{++}, 1^{--}$

not exotic states exotic states require $S \neq 0$

$$S = 1, L = 0, m = 1$$

$$J^{PC} = 0^{-+} 0^{+-}$$

$$1^{-+} 1^{+-}$$

$$2^{-+} 2^{+-}$$

J^{PC} Exotic quantum numbers

ightarrow A signature for exotic mesons like

Glueball, $q\overline{q}$ - $q\overline{q}$ Molecule or Hybrid Mesons

GlueX: Look for hybrid mesons with exotic quantum numbers

Beam 0000 Hall-D Detector

Hybrid Meson Mass Estimates

Latest lattice calculation predict full meson spectrum

J. Dudek et al. Phys. Rev. D82 (2010) 034508

 $m_u = m_d = m_s$ quarks, $m_\pi \sim$ 700MeV 2 lattice volumes Beam 0000 Hall-D Detecto

Jefferson Lab

Introduction

Hybrid Meson Mass Estimates

Latest lattice calculation predict full meson spectrum

 $m_u = m_d = m_s$ quarks, $m_\pi \sim$ 700MeV 2 lattice volumes

OC

GLUE)

DIS 2012, Bonn 4/17

Beam 0000 Hall-D Detector

Hybrid Meson Mass Estimates Extrapolate to the physical pion mass:

DIS 2012, Bonn 4/17

Beam 0000 Hall-D Detector

Hybrid Meson Mass Estimates Extrapolate to the physical pion mass:

2.5 조 조 m / GeV2.0 王王 ¥ previous 1.5 studies auenched 16^{3} 20^{3} dynamical 1.0 0.1 0.2 0.3 0.6 $m_\pi^2/{ m GeV^2}$

Lightest hybrid mesons around 2 GeV/c^2

Beam

Hall-D Detector

Hybrid Meson Production

Pion Beam

- *π* with S=0, L=0 and Δm=1
 1⁺⁺, 1⁻⁻
- Require spin flip
- E852, GAMS, KEK, VES, COMPASS

Jefferson Lab

Beam

Hall-D Detector

Hybrid Meson Production

Pion Beam

- π with S=0, L=0 and Δ m=1 1⁺⁺, 1⁻⁻
- Require spin flip
- E852, GAMS, KEK, VES, COMPASS

Photon Beam

- γ with S=1, L=0 and Δ m=1 0⁻⁺, 0⁺⁻, 1⁻⁺, 1⁺⁻, 2⁻⁺, 2⁺⁻
- No spin flip required
- photon linerarly polarized
- CLAS

DIS 2012, Bonn 5/17

Hall-D Detector

Reports on Hybrid Mesons

Best Candidate: $\pi_1(1600)$

VES	$\pi^- N$	\rightarrow	$pb_1\pi^-$
	$\pi^- N$	\rightarrow	$pf_1\pi^-$
	$\pi^- N$	\rightarrow	$p\eta'\pi^-$
E852	$\pi^- p$	\rightarrow	$pb_1\pi^-$
	$\pi^- p$	\rightarrow	$pf_1\pi^-$
	$\pi^- p$	\rightarrow	${oldsymbol p}\eta^\prime\pi^-$
	$\pi^- p$	\rightarrow	$oldsymbol{p} ho\pi^-$
Crystal Barrel	рn	\rightarrow	$b_1\pi^-$
COMPASS	$\pi^- p$	\rightarrow	$\rho\pi$

Partial Wave Analysis:

- Strong evidence for 1⁻⁺ wave in b₁π, f₁π, η'π
- Dispute in $\rho\pi$
- Missing PWs in analysis?
- Feed through a₂(1670)?
- CLAS no signal in $\gamma p \rightarrow (n) \pi^+ \pi^+ \pi^-$

Beam 0000 Hall-D Detecto

Reports on Hybrid Mesons

Best Candidate: $\pi_1(1600)$

VES	$\pi^- N$	\rightarrow	$pb_1\pi^-$
	$\pi^- N$	\rightarrow	$pf_1\pi^-$
	$\pi^- N$	\rightarrow	$oldsymbol{p}\eta^{\prime}\pi^{-}$
E852	$\pi^- p$	\rightarrow	$pb_1\pi^-$
	$\pi^- p$	\rightarrow	$pf_1\pi^-$
	$\pi^- p$	\rightarrow	$oldsymbol{p}\eta^{\prime}\pi^{-}$
	$\pi^- p$	\rightarrow	$oldsymbol{p} ho\pi^-$
Crystal Barrel	рn	\rightarrow	$b_1\pi^-$
COMPASS	$\pi^- p$	\rightarrow	$ ho\pi$

Partial Wave Analysis:

- Strong evidence for 1⁻⁺ wave in b₁π, f₁π, η'π
- Dispute in $\rho\pi$
- Missing PWs in analysis?
- Feed through a₂(1670)?
- CLAS no signal in $\gamma p \rightarrow (n) \pi^+ \pi^+ \pi^-$

 $\pi_1(1600)$ good candidate for a 1⁻⁺ resonance!

Beam 0000 Hall-D Detector

Hybrid Meson Decay

Model dependent estimates of decay products.

Model assumption: Decay into L=1,L=0 mesons

> DIS 2012, Bonn 7/17

Beam 0000 Hall-D Detector

GLUE

Hybrid Meson Decay

Model dependent estimates of decay products.

Model assumption: Decay into L=1,L=0 mesons

> DIS 2012, Bonn 7/17

Beam 0000 Hall-D Detector

Hybrid Meson Decay

Model dependent estimates of decay products.

Model decay modes:

Multi particle final states with neutral and charged particles!

Model assumption: Decay into L=1,L=0 mesons

> DIS 2012, Bonn 7/17

Beam 0000 Hall-D Detector

Hybrid Meson Decay

Model dependent estimates of decay products.

Model assumption: Decay into L=1,L=0 mesons Model decay modes:

0+-:	$ ightarrow b_1 \pi$	\rightarrow	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$
1-+:	$ ightarrow {m a_1}\pi$	\rightarrow	$\pi^+\pi^-\pi^+\pi^-$
1-+:	$ ightarrow b_1 \pi$	\rightarrow	$\omega\pi\pi$
	$\rightarrow f_1 \pi$	\rightarrow	$\eta\pi\pi\pi$
	$ ightarrow ho\pi$	\rightarrow	$\pi\pi\pi$

Multi particle final states with neutral and charged particles!

- 70% involve at least one π^0
- 50% more than one π^0

Beam 0000 Hall-D Detector

Hybrid Meson Decay

Model dependent estimates of decay products.

Model assumption: Decay into L=1,L=0 mesons Model decay modes:

0+-:	$ ightarrow b_1 \pi$	\rightarrow	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$
1-+:	$ ightarrow {m a_1}\pi$	\rightarrow	$\pi^+\pi^-\pi^+\pi^-$
1-+:	$ ightarrow b_1 \pi$	\rightarrow	$\omega\pi\pi$
	$\rightarrow f_1 \pi$	\rightarrow	$\eta\pi\pi\pi$
	$ ightarrow ho\pi$	\rightarrow	$\pi\pi\pi$

Multi particle final states with neutral and charged particles!

- 70% involve at least one π^0
- 50% more than one π^0

Need hermetic detector with good calorimetry!

Beam ●000 Hall-D Detector

CLUEX citations

CEBAF Accelerator Site

Beam ●000 Hall-D Detector

GLUE Citations

CEBAF Accelerator Site

Beam •000 Hall-D Detector

GLUE Citations

CEBAF Accelerator Site

DIS 2012, Bonn 8/17

Beam •000 Hall-D Detector

GLUE Citations

CEBAF Accelerator Site

DIS 2012, Bonn 8/17

Beam •000 Hall-D Detector

GLUEX

CEBAF Accelerator Site

Beam 0000 Hall-D Detector

GLUE

Hall-D Complex

Hall-D complex: Civil construction complete!

- Halls ready for equipment.
- Solenoid detector magnet installed.

photon, beam

75 m

Electron beam / dump

- e⁻(12GeV/c) beam
 - 20µm thick diamond radiator
 - Coherent Bremsstrahlung

Top View

Tagger

• 76m Photon beam line for collimation.

Solenoid-

Based detector

- 40% polarization at 9 GeV
- Hall-D beam dump for photons only!

Pair

Spectrometer

Collimator

Photon

Beam dump

- 20 μm thick diamond radiator
- 76 m flight path to collimator
- 40% polarization at peak (9GeV)
- $10^8 \gamma/s$ at 8.3-9.1 GeV
- Fixed Array Hodoscope 3-11.7 GeV
- Microscope 800 MeV coverage

9 GeV

DIS 2012, Bonn

Jefferson Lab

Beam 2000 Hall-D Detector

The GlueX Detector

Magnet, Target

- Solenoid (hermiticity)
- Super-conducting
- 2 Tesla
- LH target

Jefferson Lab

Beam

Hall-D Detector

The GlueX Detector

118.1⁰ Tracking Chambers 126.4⁰ 10.80 CDC Straw tube chamber 185cm dE/dx for PID FDC Cathode strips $\delta p/p \sim 1-2\%$ 342cm 48cm -560cm 30cm-Target ç

DIS 2012, Bonn 12/17

Jefferson Lab

Beam

Hall-D Detector

The GlueX Detector

Jefferson Lab

Beam

Hall-D Detector

The GlueX Detector

Jefferson Lab

eam

Hall-D Detector

The GlueX Detector

- Tracking
- Calorimetry
- Timing
- Future PID

Beam

Hall-D Detector

GLUE

Detectors under Construction

CDC:

Central Drift Chamber

- Straw tube chamber
- 3522 channels
- Flash ADC readout
- *dE/dx* for PID
- All straws installed
- All wires strung

Built at Carnegie Mellon University

DIS 2012, Bonn 13/17

Beam 0000 Hall-D Detector

Detectors under Construction

FDC:

Forward Drift Chambers

- Cathode strip wire chambers
- 4 Packages with 6 planes
- TDC wire readout (2304)
- Flash ADC cathode strip (10368)
- Space point reconstruction
- 2 Packages built
- 3rd in production

Built at Jefferson Lab.

Beam

Hall-D Detector

Detectors under Construction

BCAL:

Barrel Calorimeter

Modules built at University of Regina Light guides at Univ. St. Maria, Chile

DIS 2012, Bonn 13/17

Beam

Hall-D Detector

Detectors under Construction

BCAL:

Barrel Calorimeter

- Scint. fiber lead matrix
- 48 Modules built
- Length: 380cm
- Thickness: 15.5 X₀
- SiPM array sensors (4000)
- Flash ADC and TDC readout

Modules built at University of Regina Light guides at Univ. St. Maria, Chile

Beam 0000 Hall-D Detector

Detectors under Construction

FCAL:

Forward Calorimeter

- Lead Glass 4 x 4 x 45 cm
- 2800 Modules
- Cockcroft-Walton bases
- Flash ADC readout
- Timing on Flash ADC

Modules built at Indiana University

Beam 0000 Hall-D Detector

GLUE

Readout Electronics and Trigger

Fully pipelined front-end electronics with VXS backplane, developed at JLab

Global Trigger Crate Trigger Distribution Crate 250 MHz fADC: 12bit, 16ch trigger L1 Subsystem • F1TDC: 60ps, 32ch or 120ps, Data Streams (hits decisions & energy) 64ch 125 MHz fADC: 12bit, 72ch VXS-Crate VXS-Crate VMEx64/VXS back plane Fiber Optic Clock Links Trig1 Trigger latency $\sim 3\mu s$ Trig2 Svnc Busy 3GB/s DAQ rate 300MB/s to disk 3 PB/y to tape Front-End Crates VME Readout to Up to 128 front-end Gigabit Ethernet crates VXS-Crate VXS-Crate

Beam 0000 Hall-D Detector

In the spot light

Two examples of new technologies in GlueX

- First Large scale use of SiPM arrays (Hamamatsu MPPC)
- 20 μm thick diamond radiator

DIS 2012, Bonn 15/17

Beam 0000 Hall-D Detector

GLUE

In the spot light

First large scale use of SiPM arrays(Hamamatsu MPPC):

- 3x3 mm² sensors
- 16 in one array
- Insensitive to magnetic field
- Photo detection efficiency ~20%
- Gain $\sim 5\cdot 10^5$
- Radiation sensitive

Beam 0000 Hall-D Detector

In the spot light

20 μm thick diamond radiator

Laser ablation of diamond

- Start with 300µm diamond 5x5 mm².
- Excimer laser to mill a window.
- $3x3 mm^2$ area of $20\mu m$.
- Developement at UConn based on work at BNL.

Timeline depends on DOE funding schedule:

- Hall-D current status: 35% complete
- First Beam Test: April 2014, accelerator and beam lines
- First Beam on target: Fall 2015, Engineering run

Beam 0000 Hall-D Detector

Physics Program in Hall-D

Approved Experiments:

- GlueX, Meson Spectroscopy, search for hybrid mesons
- Primakoff, $\Gamma_{\gamma\gamma^*}$ of η
- Other physics topics:
 - Pion Polarizability: $\gamma\gamma^* \rightarrow \pi^+\pi^-$
 - Standard Model Tests: rare η decays
 - Inverse DVCS: time like compton scattering
 -