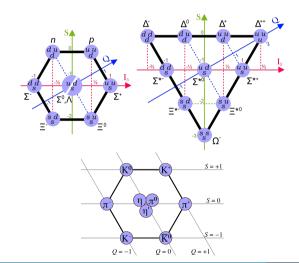

Stuart Fegan University of York December 9th, 2025

Introduction - QCD

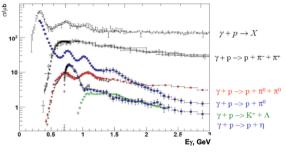
Quantumchromodynamics - QCD describes Strong force interactions in the Standard Model



1/20 S. Fegan FDSA 2025 December 9th, 2025

Quark Models

- Quark models play a vital role in the non-perturbative regime of QCD
- Numerous hadronic states predicted from the degrees of freedom associated with coloured quarks
- Experimental data has provided information on many of these states

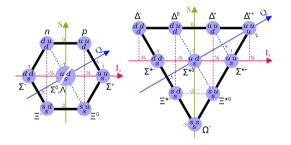

S. Fegan FDSA 2025 December 9th, 2025 2/20

Finding Resonances

Hadron spectroscopy has two main goals:

- Precision measurements of the properties of observed states
- Searches for unseen, (un)predicted or unconventional states

Finding some states can be difficult in a simple "bump hunt"; many are wide and overlap


R. Beck and U. Thoma, EPJ Web Conf 134, 04003 (2017)

■ Use alternative means; coupling strength to a reaction channel, manifestation in experimental observables, etc. to aid searches

S. Fegan FDSA 2025 3/20 December 9th, 2025

Finding Resonances

Many more states predicted than observed

	Predicted	Observed
N *	62	21
Δ^*	38	12
Λ*	71	14
Σ^*	66	9
Ξ*	73	6
Ω^*	36	2

R.G. Edwards et al. Phys Rev D87 (2013) 054506

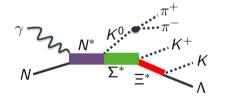
This difference is even more pronounced in the Hyperons, where there is limited data

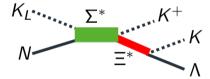
S. Fegan FDSA 2025 December 9th, 2025 4/

Experimental Facilities

Electromagnetic beam facilities

Bulk of hadron spectroscopy data from hadron beam facilities


lacktriangleright Dominance of πN scattering data limits sensitivity to resonances that weakly couple to this channel


Electromagnetic beams can provide more information, but cross sections are smaller

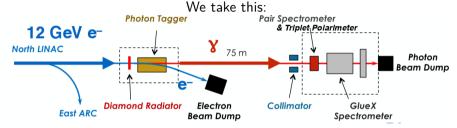
S. Fegan FDSA 2025 December 9th 2025 5/20

Strange Beams

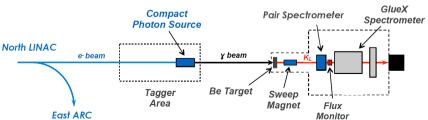
With a unit of Strangeness in the beam, producing hyperon resonances becomes much more straightforward

S. Fegan 6/20 FDSA 2025 December 9th, 2025

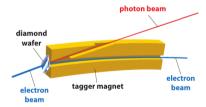
CEBAF


- Continuous Electron Beam Accelerator Facility
- Superconducting RF accelerator
- Electron beam energies up to 12 GeV
- Four experimental halls
- Secondary beams already available (real photons)

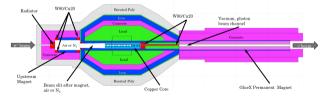
So, how do we make a strange beam?


S. Fegan FDSA 2025 December 9th, 2025 7/20

$\overline{K_{Long}}$ Facility in Hall D


and turn it into this:

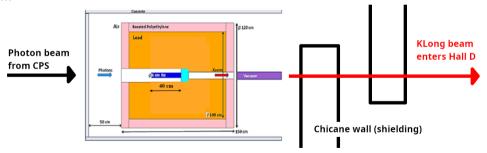
Compact Photon Source


Secondary photon beam in GlueX:

- Thin radiators, minimise rescattering
- Limits photon beam intensity

Tertiary K_{Long} beam, first produce photons from CEBAF electrons:

- Compact Photon Source produces high intensity photon beam
- Thick radiator, heavily shielded to reduce background dose

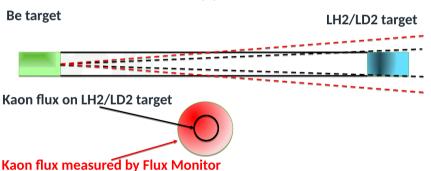


S. Fegan FDSA 2025 December 9th, 2025 9/20

Summary

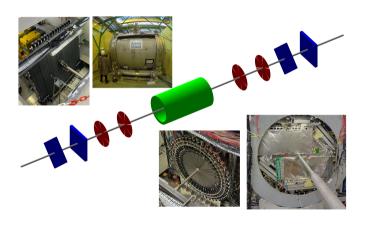
K_{Long} Production

Beam from Compact Photon Source impinges on Beryllium target, producing K_{Long} beam


S. Fegan FDSA 2025 December 9th, 2025 10/20

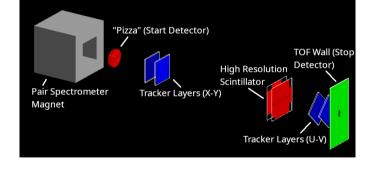
Measuring K_{Long} Flux

Flux at target can be inferred from measuring K_{Long} decays


- Install detectors to measure these in-flight K_{Long} decays The Flux Monitor
- ullet K_{Long} beam diverges, can be measured by careful choice of flux monitor location
- Assumes no information lost in beampipe

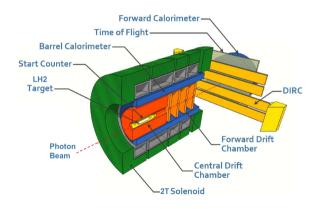
S. Fegan FDSA 2025 December 9th, 2025 11/20

K_{Long} Flux Monitor



- Flux Monitor development led by York
- Reusing straw tube trackers and TOF components from the former WASA detector in Jeulich
- Concept allows for addition of a solenoid magnet to enhance capabilities

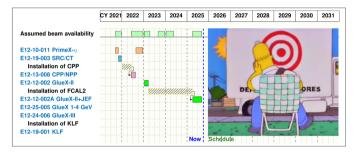
S. Fegan FDSA 2025 December 9th, 2025 12/20


K_{Long} Flux Monitor

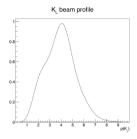
- Flux Monitor development led by York
- Reusing straw tube trackers and TOF components from the former WASA detector in Jeulich
- Concept allows for addition of a solenoid magnet to enhance capabilities

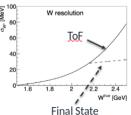
S. Fegan FDSA 2025 December 9th, 2025 13/20

The GlueX Detector in Hall D



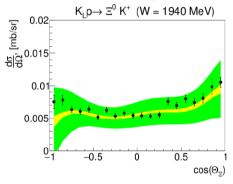
- Charged and neutral particle detection in a hermetic solenoid-based detector
- Uniform acceptance
- GlueX is a meson spectrosopy experiment, but hall and equipment used for other experiments, including KLF

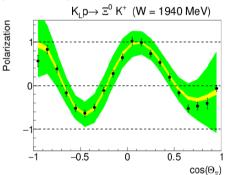

S. Fegan FDSA 2025 December 9th, 2025 14/20


Summary

Planning and Schedule

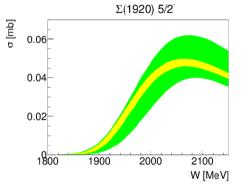
- Intense kaon beam on target
- Proton and neutron targets (100 days approved)
- Low background
- Exclusive and inclusive final states

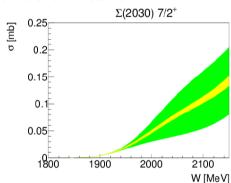



S. Fegan FDSA 2025 December 9th, 2025 15/20

Projected Results

Cascade production on the proton, $K_L p o K^+ \Xi^0$

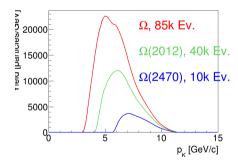


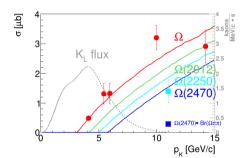

Green = 20 days running Yellow = 100 days running

S. Fegan FDSA 2025 December 9th, 2025 16/20

Projected Results

Projected cross section error bars for Σ^* states

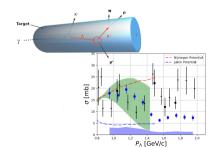



Green = 20 days running Yellow = 100 days running

S. Fegan FDSA 2025 December 9th, 2025 17/2

Projected Results

Expected Yields and Cross Sections for Ω^* states



18/20 S. Fegan FDSA 2025 December 9th, 2025

J-PARC E07 experiment

Additional Opportunities

- Hyperon-nucleon scattering
- Possible contribution to Neutron Star equation of state
- Very little existing data

- Experimental apparatus tracking detector Emulsion module ■ Hypernuclei detection in nuclear
- emulsions
- Similar set up behind GlueX in development for K_{Long}

I Haidenhauer and II-G Meißner Phys Rev C 72 044005 (2005) T. A. Riiken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59, 21 (1999)

Conclusions and Outlook

- \blacksquare Development of a K_{Long} beam facility is well underway at Jefferson Lab
- Makes heavy use of existing Hall D infrastructure and expertise to expand the JLab physics program
- Leveraging strangeness to greatly increase the world data on hyperon production
 - Physics observables will constrain Partial Wave Analyses and reduce model-dependent uncertainties in their interpretation
 - Enable detailed measurements of the properties of hyperon resonances
- University of York has a leading role:
 - Design and construction of the Kaon Flux Monitor
 - Simulation studies of several reactions
 - New ideas to expand the scope of the project

FDSA 2025 20/20 December 9th, 2025