<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <p>from Markus Diefenthaler et al., should be interesting...<br>
    </p>
    <div class="moz-forward-container"><br>
      <br>
      -------- Forwarded Message --------
      <table class="moz-email-headers-table" cellspacing="0"
        cellpadding="0" border="0">
        <tbody>
          <tr>
            <th valign="BASELINE" nowrap="nowrap" align="RIGHT">Subject:
            </th>
            <td>[Eic-news-l] Machine Learning Seminar, November 6</td>
          </tr>
          <tr>
            <th valign="BASELINE" nowrap="nowrap" align="RIGHT">Date: </th>
            <td>Thu, 1 Nov 2018 17:32:14 -0400</td>
          </tr>
          <tr>
            <th valign="BASELINE" nowrap="nowrap" align="RIGHT">From: </th>
            <td>Markus Diefenthaler <a class="moz-txt-link-rfc2396E" href="mailto:mdiefent@jlab.org"><mdiefent@jlab.org></a></td>
          </tr>
          <tr>
            <th valign="BASELINE" nowrap="nowrap" align="RIGHT">To: </th>
            <td><a class="moz-txt-link-abbreviated" href="mailto:eic-news-l@lists.bnl.gov">eic-news-l@lists.bnl.gov</a></td>
          </tr>
        </tbody>
      </table>
      <br>
      <br>
      <div class="">
        <div class="">Hello, everyone: 
          <div class=""><br class="">
          </div>
          <div class="">We would like to invite you to a Machine
            Learning Seminar at the EIC Center at Jefferson Lab (<a
href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.eiccenter.org_&d=DwMFaQ&c=lz9TcOasaINaaC3U7FbMev2lsutwpI4--09aP8Lu18s&r=JKPm21o4RG5_VIn2fXX6tQ&m=wexFIceK7NwtTZSHtiQN2qLOcTWC3fuU5Y8uMgU8Gvg&s=qx4LFbuyCX4dvOHmwnZ7_g0HM3TiLE61j-KeZIzhjo4&e="
              class="" moz-do-not-send="true">https://www.eiccenter.org</a>):
             <br class="">
            <br class="">
            Artificial intelligence (AI) and machine learning (ML)
            methods will allow to accelerate research in NP. On Tuesday,
            November 6, we will review promising R&D areas in ML in
            HEP and NP. Anima Anandkumar (Caltech) will address in her
            keynote “Opportunities for infusing physics and domain
            knowledge into AI/ML algorithms”. An overview about the
            R&D on scientific machine learning will be provided by
            Steven Lee (DOE ASCR) and Wahid Bhimji (NERSC). A.-K. Burns
            (William & Mary), C. Fanelli (MIT), and A. Tsaris
            (Fermilab) will present specific use cases for ML methods in
            HEP and NP. 
            <div class=""><br class="">
            </div>
            <div class="">You are highly welcome to join our discussions
              at Jefferson Lab or via BlueJeans (details on <a
                href="https://www.jlab.org/indico/event/247/" class=""
                moz-do-not-send="true">https://www.jlab.org/indico/event/247/</a>).
              Please find our poster with the detailed program on: </div>
            <div class=""><br class="">
            </div>
          </div>
        </div>
        <blockquote class="" style="margin: 0px 0px 0px 40px; border:
          none; padding: 0px;">
          <div class="">
            <div class=""><a
                href="https://www.jlab.org/indico/event/247/session/8/material/0/0.pdf"
                class="" moz-do-not-send="true">https://www.jlab.org/indico/event/247/session/8/material/0/0.pdf</a></div>
          </div>
        </blockquote>
        <div class="">
          <div class="">
            <div class="">
              <div class=""><br class="">
              </div>
              <div class="">Best regards, </div>
              <div class=""><br class="">
              </div>
              <div class="">Amber, Chip, Graham, Mark, and Markus. </div>
            </div>
          </div>
        </div>
      </div>
      <div class=""><br class="">
      </div>
      <br class="">
    </div>
  </body>
</html>