<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>Folks,</p>
    <p>Please find the minutes <a moz-do-not-send="true"
href="https://halldweb.jlab.org/wiki/index.php/HDGeant4_Meeting,_March_9,_2021#Minutes">here</a>
      and below.</p>
    <p>  -- Mark</p>
    <p>    __________________________________________</p>
    <p>
    </p>
    <div id="globalWrapper">
      <div id="column-content">
        <div id="content" class="mw-body" role="main">
          <h2 id="firstHeading" class="firstHeading" lang="en"><span
              dir="auto">HDGeant4 Meeting, March 9, 2021, </span><span
              class="mw-headline" id="Minutes">Minutes</span></h2>
          <div id="bodyContent" class="mw-body-content">
            <div id="mw-content-text" dir="ltr" class="mw-content-ltr"
              lang="en">
              <p>Present: Tegan Beattie, Mark Ito (chair), Richard
                Jones, Zisis Papandreou, Churamani Paudel, Lubomir
                Pentchev, Justin Stevens, Simon Taylor, Nilanga
                Wickramaarachchi
              </p>
              <p>There is a <a rel="nofollow" class="external text"
                  href="https://bluejeans.com/s/wKdTln_kEz3/">recording
                  of this meeting</a> on the BlueJeans site. Log into
                the BlueJeans site first to gain access (use your JLab
                credentials).
              </p>
              <h3><span class="mw-headline"
                  id="Review_of_minutes_from_the_last_meeting">Review of
                  minutes from the last meeting</span></h3>
              <p>We went over the <a
href="https://halldweb.jlab.org/wiki/index.php/HDGeant4_Meeting,_February_23,_2021#Minutes"
                  title="HDGeant4 Meeting, February 23, 2021">minutes
                  from February 23rd</a>. Richard has <a rel="nofollow"
                  class="external text"
href="https://mailman.jlab.org/pipermail/halld-offline/2021-February/008475.html">already
                  made the proposed changes to the tagger-hit-to-energy
                  conversion</a>. Pull requests await merging in the
                halld_recon and halld_sim repositories.
              </p>
              <h3><span class="mw-headline"
                  id="New_wiki_page:_Particle_Gun_Collection">New wiki
                  page: Particle Gun Collection</span></h3>
              <p>Richard described an upcoming historical catalog of
                single particle gun simulations. See <a
                  href="https://halldweb.jlab.org/wiki/index.php/Particle_Gun_Collection"
                  title="Particle Gun Collection">his new wiki page</a>
                for the complete description.
              </p>
              <h3><span class="mw-headline" id="Issues_on_GitHub">Issues
                  on GitHub</span></h3>
              <p>We went over <a rel="nofollow" class="external text"
                  href="https://github.com/JeffersonLab/HDGeant4/issues">the
                  issues</a>.
              </p>
              <h4><span class="mw-headline"
                  id="Hits_in_both_CALs_from_the_same_track">Hits in
                  both CALs from the same track</span></h4>
              <p>Lubomir led us through a discussion of <a
                  rel="nofollow" class="external text"
                  href="https://github.com/JeffersonLab/HDGeant4/issues/185">Issues
                  on GitHub</a>. Two ideas that came up:
              </p>
              <ul>
                <li> There might be an effect where a charged particle's
                  trajectory is extrapolated beyond what is reasonable,
                  allowing it to hit the FCAL and create a spurious
                  match there.</li>
                <li> Particles that clip the corner of the BCAL and send
                  parts of the shower into the FCAL could explain some
                  of the double matching. This behavior could be
                  different between G3 and G4.</li>
              </ul>
              <p>For all the details, see the Issue itself, linked
                above.
              </p>
              <h4><span class="mw-headline"
                  id="Proton_timing_in_the_BCAL">Proton timing in the
                  BCAL</span></h4>
              <p>Again, <a rel="nofollow" class="external text"
                  href="https://github.com/JeffersonLab/HDGeant4/issues/179">Issue
                  #179</a> has mainly to do with late hits in the BCAL
                from charged hadrons. Tegan presented results from a
                study to determine the physical mechanism for the late
                hits, as usual,comparing the effects among G4, G3/HADR1,
                and G3/HADR4. It turns out identifying parent particles
                for the particles creating late hits was not possible in
                an unambiguous manner. He was able to plot the timing
                distributions for the various physical interaction
                mechanisms separately, again comparing the different
                Geant engines. In fact, some of these interactions
                happen quite late, tens of nanoseconds after the event.
              </p>
              <p>For all of the details see <a rel="nofollow"
                  class="external text"
href="https://halldweb.jlab.org/doc-private/DocDB/ShowDocument?docid=4878">Tegan's
                  plots on the DocDB</a>. They are the ones with "MAR04"
                in the name.
              </p>
              <h4><span class="mw-headline"
                  id="G3.2FG4_Difference_in_FDC_wire_efficiency_at_the_cell_boundary">G3/G4
                  Difference in FDC wire efficiency at the cell boundary</span></h4>
              <p>Richard reported on the root cause of <a
                  rel="nofollow" class="external text"
                  href="https://github.com/JeffersonLab/HDGeant4/issues/181">Issue
                  #181</a>. Interestingly, the G3 simulation agrees
                better with the data because of the requirement that
                only one cell in a layer is hit. This artificially
                eliminates hits from tracks that spend a small amount of
                time in a cell, but happily since those trajectory have
                lower detection efficiency, their elimination mimics
                what is seen in data. The G4 simulation has no such
                mechanism for eliminating corner-clipping tracks and so
                hits with long drift times are produced at a rate higher
                than seen in the data.
              </p>
              <p>See the Issue, linked above, for a more detailed
                explanation, with diagrams.
              </p>
              <p>We seemed to be forming a consensus that Richard should
                allow multiple hits per layer, but implement an
                efficiency function that reduced the number of large
                DOCA hits.
              </p>
              <p>[Added in press: in the issue itself you will see
                Richard's description of adding actual wires to the FDC
                simulation geometry.]
              </p>
            </div>
            <br>
          </div>
        </div>
      </div>
    </div>
  </body>
</html>