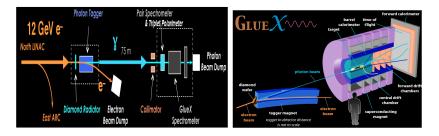
Analysis of reaction $\gamma + p \rightarrow a_2^- \Delta^{++}$


From GlueX Data

Dakota Christian

Old Dominion University

October 30, 2019

(Jefferson Lab) GlueX Hall D Detector

- Diamond Radiator
- Brems·strah·lung electrons
- Photon Tagger
- Electron Beam Dump
- Collimator
- Pair Spectrometer

- GlueX Spectrometer
- Liquid Hydrogen Target
- Central/Forward Drift Chamber
- Barrel/Forward Calorimeter

Previous Experiments

Previous Experiments have shown angular distributions and cross-sections of a_2^- which decays to...

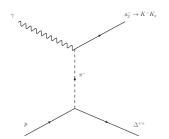
• K^-K_s through pion proton reaction

 $\pi^- p \rightarrow K^- K_s p$

• 3 pions π^{\pm} through gamma proton reaction

$$\gamma p \rightarrow a_2^- \Delta^{++} \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$$

But never has $a_2^- \Delta^{++}$ been identified as $K^- K_s \Delta^{++}$ through gamma proton reaction


Reaction

- $\gamma + p \rightarrow \qquad a_2^- \ \Delta^{++} \rightarrow \qquad K^- \ K_s \ \pi^+ \ p$
 - Decay

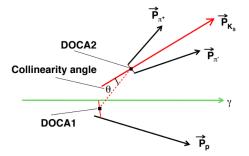
• Branching Fraction

- $\cdot \quad \Delta^{++}(1232) \rightarrow \pi^+ p$ $\cdot \quad a_2^-(1320) \rightarrow K^- K_s$
- $\cdot \ {\it K_s} \rightarrow \pi^+ \ \pi^-$

- · 99.4%
- · 5%
- · 69.2%

Method

 a_2^- was not directly measured from the experiment. Instead it's identification comes from it's decay K^-K_s


Where, ${\bf K_s}~{\bf had}~{\bf to}~{\bf be}~{\bf reconstructed}$ and identified by it's own decay $\pi^+\pi^-$

Parts of data received from the detectors are modified or removed to single out specific areas of interest (to find/identify). Because of this we need to solve many questions...

- What are we trying to find?
- What needs to be modified/removed from our data and how do we go about doing it?
- What procedures can we take in order to ensure we are modifying/removing only whats necessary?
- How do we strengthen our findings and reduce the possibility of miss identification of particles

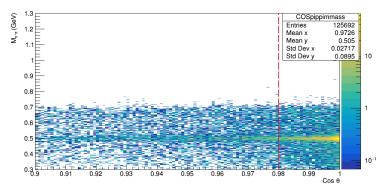
Vertex and Collinearity Angle For K_s Reconstruction


CODE - Jorn Langheinrich: DAnalysisUtilities::Calc_DOCA

Primary Vertex / Decay Vertex / Collinearity Angle Distance Between Midpoints of DOCA1 and DOCA2 Cos θ as the Collinearity angle

 $M_{\pi^+ \pi^-}$ vs Distance

Graphically representing vertex distance to remove background

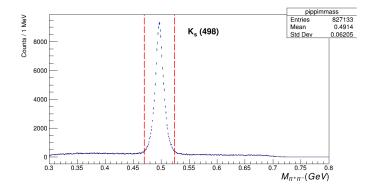


Distance > 2 cm

Between midpoints of DOCA1 & DOCA2

$$M_{\pi^+\,\pi^-}$$
 vs Cos $heta$

Graphically representing collinearity angle to remove background

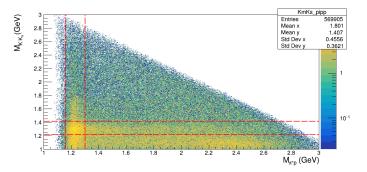


 $\cos \theta > 0.98$

Collinearity Angle

Invariant Mass of $\pi^+\pi^-$

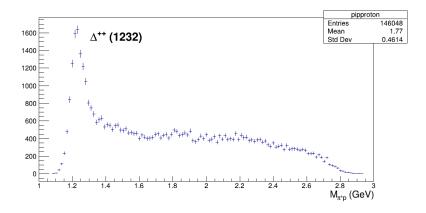
By limiting our decay vertex we are able to identify K_s (known value 498 MeV)



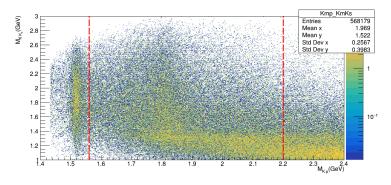
• 0.470 < $M_{\pi^+ \, \pi^-}$ < 0.524 GeV

 $\textbf{497}~\pm \textbf{27}~\textit{MeV}$

 $M_{K^-K_s}$ vs M_{π^+p}

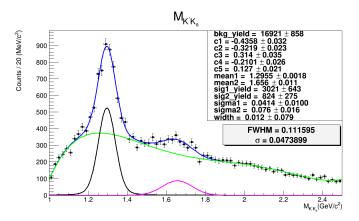

In order to correctly identify a_2^- and Δ^{++} we must single out K^-K_s (expected to be a_2^-) and π^+p (expected to be Δ^{++}) and deem the surrounding areas as unwanted background

• $1.220 < M_{K^-K_s} < 1.420$ GeV • $1.162 < M_{\pi^+p} < 1.302$ GeV


Invariant Mass of $\pi^+ p$

We are then able to identify Δ^{++} (known value 1232 MeV)

Clear peak at 1230 MeV


 $M_{K_sK^-}$ vs M_{K^-p}

• $1.56 < M_{K^-p} < 2.2$ GeV

 Λ (1520) contributes to background

 a_2^- Voigtian Fit

- Results for Full beam energy range
- Clean peak for a_2^- (1320)
- Possible peak around 1700 MeV

Outlook

First observation of $a_2^- \rightarrow K^- K_s$ in photoproduction

Test natural and unnatural parity contribution