Amplitude analysis of the $\omega \pi^-$ system at GlueX

Amy M. Schertz

January 2021

Signals for mesons with exotic J^{PC} quantum numbers, which are not allowed for a quark-antiquark pair, have been experimentally observed, but their exact nature is still unknown. A candidate for these exotics is the hybrid meson, which consists of a quark, an antiquark, and an excited gluonic field configuration. GlueX, a photoproduction experiment in Jefferson Lab's Hall D, aims to map the spectrum of light-quark mesons by studying a multitude of final states allowed by the detector's large acceptance.

The lightest expected exotic hybrid meson with $J^{PC} = 1^{-+}$ has been predicted to decay predominantly to $b_1\pi$, in a recent calculation by the HadSpec Collaboration [1]. Thus, understanding the decay of the axial-vector b_1 meson is an important step in the search for exotics. In this talk, studies of the reaction $\gamma p \to \Delta^{++} \omega \pi^{-}$ at GlueX will be presented, with an emphasis on the amplitude analysis of the $\omega \pi^{-}$ final state, which is the dominant decay mode of the b_1^{-} .

References

 Antoni J. Woss et al. "Decays of an exotic 1⁻⁺ hybrid meson resonance in QCD". In: (Sept. 2020). arXiv: 2009.10034 [hep-lat].