Structure of the $\Lambda(1405)$ from Photoproduction at GlueX

R. A. Schumacher¹, N. Wickramaarachchi², P. Hurck³

¹Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA

²The Catholic University of America, Washington, D.C. 20064, USA

³University of Glasgow, Scotland, UK

(on behalf of the GlueX Collaboration)

The well-established $\Lambda(1405)$ hyperon with $J^{\pi} = \frac{1}{2}^{-}$ may be a dual structure consisting of two overlapping I = 0 resonances. Each resonance may couple to $\Sigma \pi$ and $N\overline{K}$ final states, but a direct measurement of these two decays for each resonance has not previously been done. Using the GlueX detector system at Jefferson Lab we have obtained high statistics samples for the $\Lambda(1405)$ structure decaying to both final states. The photoproduction measurement in the beam energy range 6.5 - 11.6 GeV used a liquid hydrogen target together with a large-acceptance charged particle tracking and electromagnetic calorimeter system. The experiment obtained the differential cross sections $d\sigma/dM_{\Sigma^0\pi^0}$ and $d\sigma/dM_{pK^-}$ in the $-(t-t_{min})$ range 0.0 - 1.5 (GeV/c)² from analyzing the reaction $\gamma p \to K^+\Lambda^*$, collected during the first phase of GlueX running. The $\Sigma^0\pi^0$ data exhibited both the dual $\Lambda(1405)$ states and the $\Lambda(1520)$ hyperon. The pK^- data were dominated by the $\Lambda(1520)$ hyperon sitting atop the tails of the $\Lambda(1405)$ states decaying to the pK^- final state.

The data were subjected to K-matrix fits to both final state channels from one or two $\Lambda(1405)$ plus the $\Lambda(1520)$ resonances. The two-resonance hypothesis for the $\Lambda(1405)$ region resulted in much better matching to the experimental results. The complex *T*-matrix pole positions of the dual $\Lambda(1405)$ resonances as well as the $\Lambda(1520)$ were extracted, and the results will be presented. The results also include first-time measurements of the mass- and beam-energy- integrated photoproduction cross sections in the stated energy range for the dual $\Lambda(1405)$ and the $\Lambda(1520)$ states. Within the framework of the *K*-matrix fits to the $\Lambda(1405)$ states, the branching ratio and branching fractions to the $N\overline{K}$ and $\Sigma\pi$ final states were obtained for the first time and will also be presented.

DRAFT OF March 27, 2024