Motivation

- Generalized Parton Distributions (GPDs) provide 3D imaging of the nucleon, unifying Parton distributions and form factors(FF).
- Timelike Compton Scattering (TCS) is a process sensitive to GPDs via interference with Bethe-Heitler (BH)[1].
- Offers unique access to the *real part* of Compton Form Factors (CFFs).

Experimental Setup

- TCS description: $\gamma p \rightarrow \gamma^* p' \rightarrow e^+ e^- p'$
- Real photon beam produced via bremsstrahlung off 11.5 GeV electron beam in HallD Jlab.
- ullet γ interact with the proton target and the product are detected by the GlueX Detector
- Excellent vertex and momentum resolution allows precise invariant mass reconstruction.

Figure 1. Gluex Detector Schematic.

TCS and BH Interference [2]

Figure 2. Frame of reference for studying TCS and BH.

The Analysis Goal is to extract Compton Form Factors from asymmetries. The interference term $\propto \text{Re}(\mathcal{H})$ and can be isolated via angular asymmetries.

This enable model-independent constraint of $H(x, \xi, t)$ at skewness $\xi = \frac{Q'^2}{2s - Q'^2}$, parton momentum fraction x and momentum transfer t.

A step towards that goal is to study the χ^2 dependence of some of the TCS/BH event selection kinematic terms.

Events spectrum

BH & TCS region: $1.2 \le M(e^+e^-) \le 2.5$ GeV Lies away from many meson resonances.

χ^2_{kin} dependence of Event Selection Variables

Cuts Applied: the cuts variables are ideally zero for Exclusive events.

$$M_{miss}^2 = (P_{\gamma}^{\mu} + p_p^{\mu} - p_{\gamma^*}^{\mu} - p_{p'}^{\mu})^2, \;\; |M_{miss}^2| \leq 0.04 GeV^2$$

$$\Delta P_{\perp} = ec{P}_{p'\perp} - ec{P}_{\gamma^*\perp}, \;\; |\Delta P_{\perp}| \leq 0.05 GeV$$

$$\Delta\Phi = \Phi_{ec{P}_{n'}} - \Phi_{ec{P}_{\gamma^*}}, \;\; |\Delta\Phi| \leq 0.15 rad$$

$$P_T^{imb} = |ec{P}_{\perp\gamma^*} + ec{P}_{\perp p'}|, \;\; P_T^{imb} \leq 0.125 GeV/c$$

Figure 4. $\Delta\Phi$ & P_T^{imb} counts for a given χ^2_{kin} cut value

Fitting function for Exclusive Events Selection Kinematic Variable

$$f(x) = \underbrace{A_L \cdot \dfrac{(\Gamma/2)^2}{(x-\mu)^2 + (\Gamma/2)^2}}_{ ext{Lorentzian core}} + \underbrace{A_G \cdot \exp\left(-\dfrac{1}{2} \left(\dfrac{x-\mu}{\sigma_G}
ight)^2
ight)}_{ ext{Gaussian tails}}$$

$$f(x) = rac{1}{x\,\sigma_{
m ln}\sqrt{2\pi}}\,\exp\left(-rac{(\ln x - \mu_{
m ln})^2}{2\sigma_{
m ln}^2}
ight)$$

Where: x: the variable $(\Delta P_{\perp}, \Delta P_T^{imb}, \Delta \Phi, \& M_{miss}^2)$.

 $A_L \equiv P[0]$: Amplitude of the Lorentzian core, μ : shared mean,

 $\Gamma \equiv P[2]$: FWHM of the Lorentzian,

 $A_G \equiv P[5]$: Amplitude of the Gaussian tail & σ_G : width of the Gaussian. μ_{\ln} : mean of $\ln x$ & σ_{\ln} : standard deviation of $\ln x$

Figure 5. $\Delta P_T, \Delta P_T^{imb}, \Delta \Phi, \& M_{miss}^2$ dependence on χ^2_{kin}

- The above plots shows that the four variables have dependence on χ^2_{kin}
- It indicates that the optimum cut for the χ^2_{kin} should be 100.0 since the M^2_{miss} amplitude began to drop after that value.
- At χ^2_{kin} below 100.0, the rate of change of width of the variables decrease & stabilize.

Outlook

- Impliment the new χ^2_{kin} cut for optimum event selections.
- Remove regions with very high BH events that suppress TCS events.
- Continue background suppression studies.

Acknowledgment

I want to acknowledge M. Boer & Sean Dobbs for their guidance

I want to acknowledge Virginia Tech, CNF and DOE for funding this project.

References

- [1] P Chatagnon, S Niccolai, S Stepanyan, MJ Amaryan, G Angelini, WR Armstrong, H Atac, C Ayerbe Gayoso, NA Baltzell, L Barion, et al. First measurement of timelike compton scattering. *Physical review letters*, 127(26):262501, 2021.
- [2] M Boër, M Guidal, and M Vanderhaeghen. Timelike compton scattering off the proton and generalized parton distributions. The European Physical Journal A, 51(8):103, 2015.