Update on Silicon Photomultipliers

Yi Qiang DOE S&T Review May 10, 2012

Bio – Yi Qiang

≻ MIT – Ph.D. (2007)

Search for pentaquarks in Hall-A at Jefferson Lab

- Duke University Post. Doc. (2007 2010)
 - GeV neutron transversity in Hall-A at Jefferson Lab, in charge of polarized ³He target
 - Co-spokesperson of a 12 GeV SoLID SIDIS experiment using a longitudinal polarized ³He target
- Jefferson Lab Hall-D Staff Scientist (2010 present)
 - In charge of photon beam radiator
 - Silicon photo multipliers, particularly for the Barrel Calorimeter

<#>

Introduction

Silicon Photo Multiplier (SiPM) is a new type of photoncounting device made up of multiple Avalanche Photo-Diode (APD) pixels operating in Geiger mode. Each APD pixel outputs a pulse signal when it detects one or more photons, and the output of the SiPM is the total sum of all these pulses.

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

<#`

Features of SiPM

- Immune to strong magnetic field: few Tesla
- Good photon detection efficiency (PDE) : > 20% 20 ns
- ➢ High gain: ∼ ×10⁶
- Compact size
- No HV needed
- Photon counting for weak light
- Some disadvantages
 - Noise rate
 - $\,\circ\,$ can be reduced by cooling the sensor
 - □ Cross talk and after pulses: 10 ~ 20%
 - □ Limited range of gain:
 - $\,\circ\,$ strong corr. between gain and PDE
 - Radiation hardness

Thomas Jefferson National Accelerator Facility SiPM - S&T Review

<#`

Time Resolution and Recovery Time

PLP-10 Picosecond Light Pulser from Hamamatsu:

- □ Pulse width < 70 ps
- □ Repetition rate up to 100 MHz
- Intrinsic time resolution
 - □ < 30 ps
 - Good enough for most of the TOF applications
- Pixel recovery/dead time
 - 10 ~ 50 ns, depends on pixel size,
 - smaller size \rightarrow shorter recovery
 - Can handle MHz level input rate

A NIM article is being prepared

<#】

5/10/2012

Thomas Jefferson National Accelerator Facility

SiPM for Hall-D Barrel Calorimeter

Barrel Calorimeter (BCAL)

- □ Scintillator fiber Lead
- 48 trapezoidal modules
- Photon energy and position $\wedge \wedge \wedge \wedge \wedge \rightarrow$

Reasons to use SiPM

- □ Strong magnetic field: > 1 T
- Tight space for readout
- Similar cost as fine-mesh **PMTs**
- □ Good time resolution
- Additional benefits
 - Natural radial segmentations for additional PID

5/10/2012

Applications for Scintillating Counters in Hall-D

- Beam line hodoscopes: tagger microscope and pair spectrometer
 - Small size to couple to thin fibers
 - Capability to handle high rates, short recovery time
- Start Counter:
 - Small size
 - Good time resolution

Photon Tagger Microscope

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

<#`

Radiation Damage to Silicon Detectors

- Bulk radiation damage in silicon detectors is primarily due to displacing a Primary Knock on Atom out of its lattice site.
- Proportional to The Non-Ionizing Energy Loss (NIEL).
- Heavier particles induce greater damage.
- Neutron damage is the major concern for SiPMs in Hall D:
 - □ > 90% damage
 - 10 years running:
 2.5×10⁹n_{eq}/cm²
 - Requires dark rate < 100
 MHz for each SiPM array

<#2

5/10/2012

Thomas Jefferson National Accelerator Facility

Neutron Radiation Tests at JLab

Test using neutron background during P-REX in Hall-A

- 12×12 mm² SiPM arrays from Hamamatsu and SenSL, 1×1 mm² and 3×3 mm² SiPMs from Hamamatsu (50 μm)
- Self-annealing at room temperature
- Need to cool these devices during GlueX operation
- Test using JLab RadCon AmBe source
 - \Box 1×1 mm² SiPMs from Hamamatsu (50 μ m)
 - Measure temperature dependence
 - Radiation damage
 - Self-annealing

 $\,\circ\,$ Impact of radiation damage on the dark rate temperature dependence

Accumulated radiation damage with annealing

NIM paper being submitted

First Look at the Radiation Damage

Thomas Jefferson National Accelerator Facility

<#2

5/10/2012

Annealing at Room Temperature

Test Sequence using AmBe Source

- 12 1×1mm² Hamamatsu SiPM (50 μm)
- Different temperature conditions/combinations
- Two irradiations and two annealings
- Total fluence ~ 13 years of high intensity running of GlueX

Numbers of units tested at different temperatures are shown in the blocks

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

Recovery at Different Temperatures

Thomas Jefferson National Accelerator Facility

<#2

5/10/2012

Damage Curve

- Radiation damage does NOT depend on temperature
- Radiation damage does NOT depend on previous irradiations

Expected Lifetime in Hall-D

- Hamamatsu improved initial dark rate of the production units, still same damage rate as prototype samples.
- Life time in Hall-D ~ 8 years with high intensity beam:
 - \Box 10⁸ γ /s on a 30 cm LH₂ target, 30% running efficiency
 - □ SiPMs cooled to 5°C, periodic annealing at 40°C

R&D for Electron-Ion Collider

- Except for the radiation hardness, SiPMs are ideal for future high energy detector systems, such as EIC:
 - High gain, compact form factor, good photon detection efficiency and immunity to magnetic field.
- An R&D proposal "to test improved radiation tolerant Silicon Photomultipliers" for EIC has been approved:
 - Collaborate with JLab detector group and Hamamatsu.
 Perform bench tests on samples with varied manufacturing parameters, then give feedbacks to Hamamatsu and continue the loop.
 - □ Received the first group of samples in April, test is ongoing.

Summary and Outlook

- Silicon photo multiplier is a novel photo detector with many desirable features.
- We thoroughly studied its performance including radiation hardness, time resolution and dead time.
- > Applications in Hall-D:
 - Barrel Calorimeter
 - Beam line hodoscopes
 - Start counter
- Future applications in EIC
 - Many possibilities
 - R&D with Hamamatsu on the radiation hardness

<#2

Acknowledgement

≻ Hall-D

- Elton Smith (Scientist)
- Alexander Somov (Scientist, SiPM timing measurement)
- Ivan Tolstukhin (Grad. Student, SiPM timing measurement)

> Detector Group

 Carl Zorn (Scientist, SiPM characterization and radiation measurements)

Radiation Control Group

- Pavel Degtiarenko (Scientist, Flux simulation)
- Melvin Washington (Radiation monitoring)
- John Jefferson (AmBe source)

<#2

BACKUP SLIDES

Thomas Jefferson National Accelerator Facility

Temperature Dependence of Dark Rate

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

Test Configuration in Hall A during P-REX

- SiPM Test Box was put on a platform with direct view of the scattering chamber, 20 m away from the Pb target with an angle of 135°.
- A real time BF₃ neutron dose monitor was put next to the SiPMs.
- Electronics was shielded by the concrete blocks, additional shielding added later.

<#2

Inside the SiPM Box

Thomas Jefferson National Accelerator Facility

Instruments in the Hall

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

<#>

The Cooling Device

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

Test Setup

Thomas Jefferson National Accelerator Facility SiPM - S&T Review

5/10/2012

<#>

Inside the Dark Cabinet

SiPM and Preamplifier Adjustable Neutral Filter: Dark, 1%, 2%, 4% and 6%

Collimating Lens and 470±10 nm Filter

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

<#2

Introduction (cont.)

- > Available in various dimensions and pixel sizes
 - □ Individual SiPM covers a few mm²
 - □ SiPM Array for larger coverage
 - \square 25, 50, 100 μ m pixel size available

Electrical properties (Hamamatsu SiPMs)

- \square Capacitance: 0.1 pF for 50 μm pixel
- Breakdown Voltage: ~ 70 V

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

<#

GlueX at Jefferson Lab Hall-D

Study the QCD in the gluonic degree of freedom by searching for mesons with exotic quantum numbers in photoproduction

Thomas Jefferson National Accelerator Facility

SiPM - S&T Review

5/10/2012

