ANALYSIS OF THE EMPTY CELL RUNS INCLUDING COMPARISON WITH SIMULATION

 $\gamma p \to \rho p \to \pi^+ \pi^- p$

NATHALY SANTIESTEBAN MAYO 2021

Data Selection Port 1

Runs: 30333, 30334, 30336, 30337, 30564, 30728, 40903, 41386, 41615, 51011, 51013, 51556

Reconstruction Plugin

- Location: /w/halld-scifs17exp/halld2/home/nathaly/test/ halld_recon/src/plugins/src-test/2pi1p
- Generates a root file with the information of all candidates: *Position, Momentum, CDC, FDC, TOF .. information
- The most relevant characteristics are described in the following couple of slides

1. Hypothesis Selection

• Only 3 Charged Tracks and No Showers events:

if (ch_tracks.size()==3) return NOERROR; if (showers.size() !=0) return NOERROR;

• Particle Hypothesis are determined by the GetHypotheses function: Definition:

based in the timing information.

2. Vertex Fit

• For each Hypothesis the Vertex Fit is performed:

Only includes the charged tracks hypothesis.

///// Kinematic fit
DKinFitUtils_GlueX *dKinFitUtils = new DKinFitUtils_GlueX(loop); DKinFitter *dKinFitter = new DKinFitter(dKinFitUtils);
dKinFitter->Reset_NewFit();
<pre>set<shared_ptr<dkinfitparticle>> FinalParticles, NoParticles;</shared_ptr<dkinfitparticle></pre>
shared_ptr <dkinfitparticle>myProton=dKinFitUtils->Make_DetectedParticle(proton_track); shared_ptr<dkinfitparticle>myPiMinus=dKinFitUtils->Make_DetectedParticle(pi_min_track); shared_ptr<dkinfitparticle>myPiPlus=dKinFitUtils->Make_DetectedParticle(pi_plus_track);</dkinfitparticle></dkinfitparticle></dkinfitparticle>
FinalParticles.insert(myProton); FinalParticles.insert(myPiMinus); FinalParticles.insert(myPiPlus);
<pre>// Production Vertex constraint set<shared_ptr<dkinfitparticle>> locFullConstrainParticles; locFullConstrainParticles.insert(myPiPlus); locFullConstrainParticles.insert(myPiMinus); locFullConstrainParticles.insert(myProton);</shared_ptr<dkinfitparticle></pre>
<pre>shared_ptr<dkinfitconstraint_vertex> locProductionVertexConstraint = dKinFitUtils->Make_VertexConstraint(locFullConstrainParticles, NoParticles, proton_track->position()); dKinFitter->Add_Constraint(locProductionVertexConstraint); // PERFORM THE KINEMATIC FIT dKinFitter->Fit_Reaction(); //GET THE FIT RESULTS double CL = dKinFitter->Get_ConfidenceLevel();</dkinfitconstraint_vertex></pre>

Example of PiMiums tracking information (same apply for the other hypothesis):

const DChargedTrackHypothesis *hyp_pi_min = thisHyp[PiMinus][0]; const DTrackTimeBased *pi_min_track = hyp_pi_min->Get_TrackTimeBased();

Final Events Section 2

Runs: 30333, 30334, 30336, 30337, 30564, 30728, 40903, 41386, 41615, 51011, 51013, 51556

Macro can be found in: /w/halld-scifs17exp/halld2/home/nathaly/test/scripts/read_2pi1p_candidates.C

1. Reconstructed candidates selection

TLorentzVector hyp1pim(pX_piminuskinfit[0],pY_piminuskinfit[0],pZ_piminuskinfit[0], E_piminuskinfit[0]); TLorentzVector hyp1pip(pX_pipluskinfit[0],pY_pipluskinfit[0],pZ_pipluskinfit[0], E_pipluskinfit[0]); TLorentzVector hyp1p(pX_protonkinfit[0],pY_protonkinfit[0],pZ_protonkinfit[0], E_protonkinfit[0]); TLorentzVector hyp1rho = hyp1pim + hyp1pip;

- Mass of the reconstructed rho: $0.6 < m_{\rho} < 1.$ [GeV]
- Coplanarity between ρ and p: $160 < \Delta \phi (\rho p) < 200 \deg$
- Reconstructed Energies in the range that are expected for $E_{\gamma} > 7 GeV$ $E_{\rho} + E_p > 7 GeV$

2. Photon information

• $E_{\gamma} > 7$ GeV (only events above that energy were taken to select the in-time and off-time photons).

•
$$|dE| < 1$$
 GeV, where $dE = E_{\gamma} + m_p - E_p - E_{\pi^+} - E_{\pi^-}$

- Final Candidates: TLorentzVector pPim(pX_pim,pY_pim,pZ_pim,E_pim) TLorentzVector pPip(pX_pip,pY_pip,pZ_pip,E_pip) TLorentzVector pP(pX_p,pY_p,pZ_p,E_p) TLorentzVector Ep(0,0,bmE[j],bmE[j]) TLorentzVector rho = pPim + pPip s = (pPim+pPip+pP)*(pPim+pPip+pP) t = -(Ep-rho)*(Ep-rho) u = -(Ep-pP)*(Ep-pP); In-time Photons $\Delta t = t - \left(t_{RF} + \frac{Z_{vtx} - Z_{Center}}{29.9792458}\right) < 2ns$
 - *t* : Time from the vertex fit

t_{RF} : Time from the beam to the center of the target: vector<const DBeamPhoton*> beam_ph; loop->Get(beam_ph); beam_ph[ii]->time();

 Z_{vtx} : Z position from the vertex fit

 Z_{center} : Z position from the center of the target (65 cm)

•
$$t > -1GeV^2$$
, $u > -1GeV^2$

2. Miss-reconstructed PiPlus and Proton

• The miss-reconstructed Pi+ and Protons are suppressed by using: $m_{\pi^- p}^2 > 5 \text{ GeV}^2$

Example of simulated events reconstructed by purposely

exchange of PiPlus <-> Proton

 ω is the angle in the Van Hove Plots

Г

3. Accidentals Subtraction

Of all variables that required the beam energy, the accidentals are subtracted:

Only in-time photons are selected

Example:

-0.44. Comparing data with simulation X Vertex [cm]

Note: The simulation is area normalized to match the data

tries

ean

ntries

94

).8

an

ean

-0.2

masspimp Zvertex massrho Entries 87 87 87 Entries 70 3.2 Mean 82.86 0.7799 Mean Std Dev 0.5083 d Dev 2.082 X Yvertex Std Dev0.08899 12095 assrho 3 87 [⊃]roton θ [deg] 87 PiPlus 0 [deg] ⁶⁰ 87 87 Entries Entries 70 .205 82.86 Mean x 0.7799 ean x 0.2097 30 E Mean 6.76⁰ Mean y ean y -0.03001 2.082 0.08899 Std Dev 100 100 50 50 40 40 30 Std Dev & 4883 td Dev x 0.1743.5 60 25 Std Dev y 2.525 d Dev y 0.1525 50 30 2 25 40 15 60 1.5 280 20 30 40 15 1 120 20 Data _ 10 200₀ 05 1.2 1.3 1.4 0.7 0.8 09 11 tex [cm] **MF+SRC** Simulation $M_{\pi^+\pi^-}[GeV]$ $\underset{M_{\pi^{+}\pi^{-}}}{\overset{0}{\underset{M_{\pi^{+}\pi^{-}}}}} M_{\pi^{-}p}[GeV]$ 0 0 0 90 92 94 8 9 10 78 80 82 Proton IPI [GeV] Z Vertex [cm] rtex [cm] massrho2D Intries 874 masspipp - 20 87 Entries tries Maaa .. 0 6160 2.768 **C** Simulation 0.6523 d Dev 0.652 masspimp deltaphi masspipp 20 ⁺p [GeV²] 87 87 40 E 87 ntries Entries 87 Entries Entries 3.2 2.768 0.6162 Mean 180 Mean 18 Std Dev 7.969 td Dev 0.5083 Std Dev 0.6523 8.087 50 35 Sto Dev Ø.1419 В Sto Dev y3.517 Mass² 30 10 14 40 25 12 30 10 20 ¹⁵ 20 10**E** 10 p [GeV] 2.5140 3 3.560 200 6 4 4.80 220 $\Delta \phi^{\dagger \pi} (\rho^{[\text{GeV}^2]} p)$ p [GeV] $M_{\pi^- p}[GeV]$ Macro of the plots, can be found in:

/w/halld-scifs17exp/halld2/home/nathaly/test/scripts/plots_data.C

1.5

1

0.5

30

20

10

0 76

40

30

25

⁸⁰20

60⁵

10

5

0

24

22

20

18

16

14

12 10

P20

40

5

9 1 -t [GeV²]

8

50

Simulation

$\gamma p \rightarrow \rho p \rightarrow \pi^+ \pi^- p$ SIMULATION

- Generated for ⁴*He*
- Two components Mean Field (MF) and Short Range Correlation (SRC)
- Uses hdgeant4
- All events in the simulation was from the center of the target.
- The simulation events have been selected using the same logic than the data. (Requirements for the event selection)

$$\sigma = \frac{N}{\epsilon \mathscr{L}} \qquad \begin{array}{c} \sigma: & \text{Cross section} \\ \varepsilon: & \text{Efficiencies} \\ \mathscr{L}: & \text{Luminosity} \end{array}$$

Used an amorphous radiator, since the data was taken with an amorphous radiator.

Flux	Target Thickness
Total Flux: 1.55E+12 γ on target for the empty cell run Data is normalize by the Total Flux and then scaled by the Expected flux 2E7 γ/s	Thickness [cm] / % X0 Atoms/cm2 4He 30 / 4 5.68E+23

Efficiencies

 $\epsilon = \frac{N_{reconstructed}}{N_{thrown}}$

Monte-Carlo based: Assumes the simulation reproduces the data.

Rate Estimates

Comparison data with simulation

