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1 Single electron scattering kinematics

For ultrarealativistic electrons E � mc2 and E ≈ |p| and the following approximation
applies for the elastically scattered electron energy E′ from a nucleus in the laboratory
system:

E′ =
E

1 + E
M (1− cosθ)

(1)

where E is the beam energy, M is the target mass and θ is the scattering angle.
Considering the HPS set up and a tungsten target, we may set M = 171.24 GeV and plot
the scattered electron energy E′ VS the scattering angle θ, within the ECal geometrical
acceptance (∆θ < 300 mrad), for different values of the beam energy E, obtaining the
curves shown in Figure 1.

The expected ECal energy resolution, according to the HPS proposal, is 4%√
E

, which
corresponds to δE ≈ 55 MeV , δE ≈ 67 MeV and δE ≈ 115 MeV , for incoming electron
energies equal to E = 1.5 GeV , E = 2.2 GeV and E = 6.6 GeV , respectively, as sum-
marized in Table 1. The energy variation ∆E′ of the scattered electrons within ECal is
negligible at all energies.

Beam Energy (GeV) Ecal resolution δE (MeV) ∆E′ (MeV)
1.5 55 0.7
2.2 67 1.4
6.6 115 14

Table 1: Expected energy resolution of ECal compared with scattered electrons energy
spread within ECal acceptance at different beam energies
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2 Elastic Electron Scattering Cross Section

The elastic scattering cross section may be computed starting from the Mott cross section,
taking into account the electric form factor for the tungsten target:

dσ

dΩ
(E, θ) =

(Ze2)2

(4πε0)24E2 sin4 θ
2

(1− β2 sin2 θ

2
)|F (Q)|2 (2)

where:

F (Q) =
3

(QR)3
(sin(QR)−QR cos(QR)) (3)

with Q2 = −(P − P ′)2, Q =
√
Q2 ≈ |~p| being the transferred four-momentum and R the

nucleus radius, given by R = 1.21fmA
1
3 . For a tungsten target we have A ≈ 183 and

Z = 74. Writing the magnetic permeability of vacuum ε0 as:

ε0 =
e2

2αhc
=

e2

2α2π~c
(4)

and using natural units:

ε0 =
e2

4πα
or α =

e2

4πε0
(5)

the differential cross section then reads:

dσ

dΩ
=
Z2α2(1− β2 sin2 θ

2)

4E2 sin4 θ
2

(
3

(QR)3
(sin(QR)−QR cos(QR))

)2

(6)

Figure 2 shows the plots of the differential cross section as a function of the electron
scattering angle in the ECal acceptance range, for electron beam energies E = 1.5 GeV
(top), E = 2.2 GeV (middle) and E = 6.6 GeV (bottom).

The graphs show a rapid drop of the differential cross section of several orders of
magnitude, within the ECal acceptance, for larger scattering angles; this effect is more
dramatic as the beam energy increases. We expect a lot more events in the central region
of the calorimeter than in the borders. At 6.6 GeV the drop of counts becomes critical.

3 Integrated cross sections

We want to estimate the number of elastic electron scattering events that would be detected
by each ECal crystal. The rates are calculated according to the following expression:

dNE′

dt
=
Ie
qe

ρ ·Nav · l
A

∆σ (7)
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where dNE′
dt is the number of scattered electrons per unit of time, Ie = 200 nA is the beam

current, qe = 1.6 10−19C is the electron charge, ρ = 19, 3 gm
cm3 is the tungsten density,

Nav = 6.022 1023(gm−1) is the Avogadro number, equal to the inverse of atomic mass unit
expressed in grams, l = 5µm is the target thickness, A = 183.35 is the average tungsten
atomic number for natural isotope composition and ∆σ is the differential cross section from
equation (6) integrated over the acceptance of a single ECal crystal.

Substituting all numbers one obtains:

dNE′

dt
= L∆σ = 3.95 1031 cm−2s−1∆σ (at 1.5 and 2.2 GeV) (8)

and
dNE′

dt
= L∆σ = 8.93 1031 cm−2s−1∆σ (at 6.6 GeV) (9)

where the values of the luminosity L = 3.95 1031 cm−2s−1 and L = 8.93 1031 cm−2s−1

have been obtained. The integration of the cross section (6) over each single ECal crystal
geometrical acceptance would require the change of variables from polar to Cartesian ones,
which is not straight forward. The following geometrical and mathematical simplifications
have been performed to calculate ∆σ. The cross section depends on the polar electron
scattering angle θ while it is independent from the azimuthal angle φ; therefore the ECal
geometry has been divided into five sectors corresponding to fixed intervals of θ, according
to Figure 3, where the upper left quadrant of the ECal is shown. The other quadrants are
obtained applying symmetry considerations and identical numbers are obtained.

The following geometrical dimensions have been considered:

• L=33.82 cm (i.e. the width of the upper left sector of the Ecal)

• h= 2 cm (distance of the bottom of the ECal quadrant from the x-z plane equal to
half of the ECal vertical opening)

• H=6.845 cm (half of calorimenter height = 1.3 cm x 5 crystals with wrapping)

• d=139.7 cm (distance of the calorimeter face from the target)

• r = d tan(θ) (radial distance of the crystals from the beam axis)

These dimensions have been extrapolated by the official Ecal dimensions channel mapping
pdf , considering the coordinates of the centers of crystals number 1 (-331.77 mm , 22.99
mm , 82.16 mm ) and 185 (-331.71 mm , 22.54 mm , 26.71 mm ) and adding the half-
width of a crystal front -face to have the coordinates of the Ecal edges. For each sector
a maximum and a minimum value of both the polar angle θ and the azimuthal angle φ
have been identified, over which the differential cross section (6) may be averaged and
integrated. Table 3 shows the intervals of the the polar angles θ and the variation of the
corresponding azimuthal angles φ as a function of θ (and r), for each of the five sectors.
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sector number θmin(mrad) θmax (mrad) ∆θ (mrad) φmin φmax
sector 1 15 63.22 48.22 arcsin(hr ) π/2;
sector 2 63.22 121.45 58.23 arcsin(hr ) arcsin(h+H

r )
sector 3 121.45 179.68 58.23 arcsin(hr ) arcsin(h+H

r )
sector 4 179.68 237.92 58.23 arcsin(hr ) arcsin(h+H

r )
sector 5 237.92 245.20 7.28 arccos(Lr ) arcsin(h+H

r )

Table 2: Intervals of the polar (θ) and azimuthal (φ) angles corresponding to the five
sectors shown in Figure 3.

The first sector has been chosen to cover all φ angles from the minimum value arcsin(hr )
to 90◦ and corresponds to a polar aperture of ∆θ = 48.22 mrad. The following three sectors
have been obtained dividing the residual values of the ECal acceptance into three equal
intervals of ∆θ = 58.23 mrad. The last sector corresponds to the residual, most distant,
ECal corner.

The following formula for the numerical integration over all crystal of each sector, has
been used:

σn =
1000∑
i=1

dσ(θi, E)
dΩ

sinθi (φmax(θi, n)− φmin(θi, n)) ∆θi =
1000∑
i=1

δσi(E, θi, n) (10)

where n is the geometrical sector number n = 1, .., 5; σn is the integrated cross section over
each of the five geometrical sectors; dσ(θi)

dΩ is the differential cross section from equation
(6) for a fixed beam energy E and scattering angle θi; θi assumes values from θmin(mrad)
to θmax, in steps of ∆θi = ∆θ

1000 (mrad) for each sector, according to Table 3; φmax(θi, n)
and φmin(θi, n), are the maximum and minimum values of the azimuthal angles, covered
by each sector n of the ECal, as a function of the scattering angle θi.

Figures 4, 5 and 6 show plots of the dependence of each element of the sum δσi(E, θi, n)
of equation (11) over the scattering angles θi, for each of the five sectors and for three
different beam energies: E = 1.5 GeV, E = 2.2 GeV and E = 6.6 GeV, respectively.

The effect of the minima in the differential cross section, due to the existence of zeros
in the electric form factor, is visible in Figure 6 at E = 6.6 GeV.

The numerical values for the cross sections σn, integrated over all the crystals of each
sector, are shown in Table 3. We may notice that the cross sections drop of some orders of
magnitude increasing the electron energy, in the same sector, as expected. In the approxi-
mation where we average over the cross section variation within each sector (which is valid
at approximately a 10% level), we may divide the total cross section over each sector σn
by the number N of crystals in each sector to obtain the average integrated cross section
over one crystal acceptance ∆σ, for each sector.

∆σn =
σn
N

(11)
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The corresponding values are listed in of in Table 4.

Ebeam (GeV) σ1 (mb) σ2(mb) σ3 (µb) σ4(µb) σ5 (nb)
1.5 337 13 926 156 4700
2.2 154 5 280 28 280
6.6 13 0.081 0.352 0.009 0.6

Table 3: Numerical values of the cross sections σn,integrated over all the crystals of each
sector.

Ebeam (GeV) ∆σ1 (mb) ∆σ2(µb) ∆σ3 (µb) ∆σ4(nb) ∆σ5 (nb)
1.5 13 325 26 4535 1722
2.2 6 133 8 813 100
6.6 0.522 2.091 0.010 0.272 0.219

Table 4: Average integrated cross sections over the single crystal acceptance, for each
sector.

Introducing the values of Table 4 into equation (7) we obtain the rate of expected hits
per crystals in the five different angular sectors for each beam energy, as reported in Table5.

It may be noticed quite a high rate is available at all energies in the first sector, while
this value drops of about one order of magnitude moving to the next angular sector for
a fixed beam energy. Another reduction of at least one order of magnitude is observed,
increasing the beam energy for a fixed sector. The overall variation over a factor of one
million occurs across the different crystals of the ECal, at different energies. In particular
the use of elastic scattering events seems not possible for the calibration of the crystals in
the three more external sectors for a beam energy of E = 6.6 GeV.

E (GeV) dN
dt (s−1) dN

dt (s−1) dN
dt (s−1) dN

dt (s−1) dN
dt (s−1)

sector 1 sector 2 sector 3 sector 4 sector 5
1.5 516 · 103 13 · 103 1057 180 68
2.2 235 · 103 5.3 · 103 310 32 4
6.6 46.7 · 103 186 0.90 2.4 · 10−2 1.9× 10−2

Table 5: Expected average number of hits per unit of time for each crystal in the five
angular sectors, shown in Figure 3, for three different beam energies E
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4 Summary and Conclusions

At all beam energies, the electrons are elastically scattered practically at the same energy,
regardless of the scattering angle, within the ECal acceptance.

The differential cross sections of single electrons scattered off tungsten nuclei have been
plotted. An approximate integration over the geometric acceptance of single crystals of
the ECal has been performed, in order to calculate the effective number of events at a
given luminosity, as a function of the crystal position. At 6.6 GeV the effect of the electric
form factor becomes relevant, lowering by several orders of magnitude the cross section
at larger angles. The use of the elastic scattered electrons events seems possible at lower
beam energies E = 1.5 GeV and E = 2.2 GeV, while events rate critically drops at E = 6.6
GeV for the outer sectors of ECal.
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Figure 1: Scattered electron energy (GeV) VS scattering angle (mrad)
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Figure 2: Differential cross sections of electron scattering off tungsten nucleus. Vertical
red lines define the angular spread corresponding to each of the sectors defined in Figure3
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Figure 3: The upper-left face of the calorimeter showing the crystal granularity and divided
into five sectors of fixed polar angle intervals.
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Figure 4: Dependence of each element of the sum δσi(E, θi, n) of equation (11) from the
scattering angles θi at Ebeam=1.5 GeV
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Figure 5: Dependence of each element of the sum δσi(E, θi, n) of equation (11) from the
scattering angles θi at Ebeam=2.2 GeV
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Figure 6: Dependence of each element of the sum δσi(E, θi, n) of equation (11) from the
scattering angles θi at Ebeam=6.6 GeV
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