STATUS OF DM AND DF

NATALIA TORO

thanks to R. Essig T. Slatyer and N. Weiner

OUTLINE

• DM Motivation

• Constraints

• Uncertainties

Indirect detection: 2010

New era of precision cosmic-ray physics!

Order-of-magnitude more precise & consistent than past data

Cross-Checks + Extensions

PAMELA checks Fermi/HESS e- flux

[Adriani, EPS2011]

new limits from Fermi on anisotropy, solar component, ...

What's the new source of positrons?

Qualitative features

- 1. Comparable new e⁺ and e⁻ fluxes
- 2. No similar rise in anti-protons (nor gamma-ray signals)

 \Rightarrow decays to hadrons, W, Z (low-mass source)

3. Rate is a few hundred times larger than expected for annihilation of a 100-1000 TeV thermal WIMP

Candidate explanations

- 1. Local(ish) astrophysical sources e.g. pulsars
- 2. New propagation effects
- 3. Dark matter annihilation, but not a vanilla thermal WIMP in vanilla halo

WIMP annihilation through dark forces

[Arkani-Hamed, Finkbeiner, Slatyer, Weiner; Pospelov and Ritz]

Qualitative features

- 1. Comparable e⁺ and e⁻ fluxes at high E *This is the easy part for DM – symmetric* annihilation
- 2. No similar rise in anti-protons (nor gamma-ray signals)

Kinematically constrained decays to charged particles lighter than $m_{A'}/2$

3. Rate is a few hundred times larger than expected for annihilation of a 100-1000 TeV thermal WIMP

Long-range attractive force mediated by $A' \Rightarrow$ Sommerfeld enhancement to annihilation rate

OUTLINE

• DM Motivation

• Constraints

• Uncertainties

Testing the Light-Mediator Hypothesis

Dark matter is everywhere, and signals should be too!

Quantitative comparisons depend greatly on velocity-dependence of Sommerfeld enhancement, and the structure of DM halos

OUTLINE

- DM Motivation
- Constraints
- Uncertainties
 - Distribution of starlight for ICS
 - Backgrounds
 - Distribution of DM:
 - halo shape
 - substructure

Inner Galaxy

Two sources of photons:

Final-state radiation (FSR)

Inverse Compton-Scattering (ICS)

Constraints depend on diffusion model and halo profile

 10^{-20} 10^{-22} 10^{-22} 10^{-24} 10^{-24} 10^{-24} 10^{-24} 10^{-24} 10^{-24} 10^{-26} 10^{-26} 10^{-2} $10^$

DM DM $\rightarrow 4\mu$, NFW profile

"Whole-sky"

Optimized generalization of inner-galaxy studies: assume a halo profile, and optimize constraint. **But still driven by the "inner" part**

10x more light from ICS
(but more uncertain)

Background model → factor of 4 reduction

"Whole-sky"

Optimized generalization of inner-galaxy studies: assume a halo profile, and optimize constraint. **But still driven by the "inner" part**

More whole-sky results [1205.2739]

These are analogous to the weakest of the 3 lines in the previous plots (no background fit, and no ICS \Rightarrow most conservative)

More whole-sky results [1205.2739]

These are analogous to the weakest of the 3 lines in the previous plots (no background fit, and no ICS \Rightarrow most conservative)

Diffuse γ Rays (from outer Milky Way halo)

1011.5090

Annihilation in Dwarf Galaxies and Nearby Clusters

1108.3546

(Limit from stacked γ signals from 10 dwarph spheroidal galaxies) 1110.1529
(Limit from combined
γ-ray signals from 8 nearby
clusters) 14

Caveats:

– relies on modeling of blazar and star-forming galaxies (86% of flux) – Relies on extrapolating Millenium II simulation from 10^9 M_{\odot} resolution to $10^{-6} \text{ M}_{\odot}$ halos *and* subhalos \Rightarrow large uncertainty in $\sim log^2$ enhancement

CMB

DM annihilation after recombination

 \Rightarrow modified power spectrum (somewhat degenerate with n_s) Before structure formation, so no substructure uncertainties!

Testing the Light-Mediator Hypothesis

Dark matter is everywhere, and signals should be too!

Quantitative comparisons depend greatly on velocity-dependence of Sommerfeld enhancement, and the structure of DM halos¹⁷

Sommerfeld Enhancement

Origin: long-range attractive force between non-relativistic particles.

At low velocity, attractive potential enhances annihilation rate by $S(v) \approx \pi \alpha_D / v$

Mass of mediator shuts off force at large distances, regulates low-velocity boost: $S_{v\to 0} \approx \pi \alpha_D \frac{m_{A'}}{m_{DM}}$

Changes form at $v/c \sim m_{A'}/m_{DM} \sim 10^{-3} - 10^{-4}$

Bound states near zero energy give parametrically large contribution to annihilation \Rightarrow resonance "spikes" [important only at factor-of-few level for most parameter space]

Substructure in Milky Way

Galaxy simulations (VL II, Aquarius) resolve >10⁶ M $_{\odot}$ subhalos

Fraction of dark matter in subhalos is only $\langle \rho_{sub} \rangle / \langle \rho \rangle \sim 10^{-3}$, but what matters for annihilation is ρ^2 .

Because subhalos are very dense, local $\Delta = \langle \rho^2_{sub} \rangle / \langle \rho^2 \rangle \sim 1$ is possible. Kamionkowski, Koushiappas, Kuhlen 2010, VL2

DM in subhalos is slow-moving \Rightarrow larger Sommerfeld enhancement.

Substructure in Milky Way

Galaxy simulations (VL II, Aquarius) resolve $>10^6$ M_{\odot} subhalos

Fraction of dark matter in subhalos is only $\langle \rho_{sub} \rangle / \langle \rho \rangle \sim 10^{-3}$, but what matters for annihilation is ρ^2 .

Because subhalos are very dense, local $\Delta = <\!\!\rho^2_{\text{sub}} > \!\!/ <\!\!\rho^2 \!\!> \!\!\sim 1 \text{ is possible.}$ Kamionkowski, Koushiappas, Kuhlen 2010, VL2

DM in subhalos is slow-moving \Rightarrow larger Sommerfeld enhancement.

Δ depends on:

- fraction of DM in subhalos
- mass distribution of subhalos
- radial distribution of subhalos
- minimum size of subhalos $\sim 10^{-6}$ (but depends on dark matter interactions)
- tidal disruption of subhalos

large extrapolation from simulation *baryonic physics, not well simulated by some estimates, not important locally* 19 When local substructure is discounted, these results particularly disfavor low mediator masses, where the Sommerfeld effect in low-v systems is **much larger** than in the local halo

Preferred Dark-Photon Masses?

But....what if signals come from sub-halos in the Milky Way?

Sommerfeld DM with Substructure

If $\Delta=1$, then the $\langle \rho^2 \rangle$ from sub-halos is as large as from the smooth Milky Way halo...

...but the Sommerfeld boost factor might be 10x larger!

Sommerfeld DM with Substructure

If $\Delta=1$, then the $\langle \rho^2 \rangle$ from sub-halos is as large as from the smooth Milky Way halo...

...but the Sommerfeld boost factor might be 10x larger!

Sommerfeld DM with Substructure

1000 100 MeV mediator, $\Delta=0$

v/c

 \Rightarrow cuspy halos ok.

 $S \propto 1/v$

100 MeV, $\Delta = 1$

GeV mediator

10-6

100

If $\Delta = 1$, then the $\langle \rho^2 \rangle$ from sub-halos is as large as from the smooth Milky Way halo...

...but the Sommerfeld boost factor might be 10x larger!

Parameter Space

Contours: dark-sector self-coupling required for PAMELA/Fermi (target boost factor of 100)

Assume additional processes **at freezeout BUT NOT today** to get correct relic abundance.

Arrows: regions excluded by DM self-interaction CMB re-ionization by DM (green line is not a constraint)

23

PAMELA consistent with WMAP-5 for *any* mediator mass, if $\Delta > 0.4$ No significant constraints from self-interaction (but PLANCK will be sensitive to 10x smaller signals...)

Parameter Space

Contours: dark-sector self-coupling required for PAMELA/Fermi (target boost factor of 100)

Assume additional processes at freezeout and today to get correct relic abundance \Rightarrow smaller favored coupling.

Arrows: regions excluded by DM self-interaction CMB re-ionization by DM

(green region – not a constraint, but region where WIMPonium matters)

Substructure & Extragalactic Limits

Limit (low-substructure)

Limit (high-substructure)

- EG and local fluxes depend on different parameters and no one simulation has enough dynamic range to estimate both e.g. local signal depends on **radial** profile of subhalo density, EG signal depends on the distribution of main-halo sizes
- Limit \Rightarrow (Local/MW) x (MW/extragalactic) $\ge 1/20$

 $\sim 1/6 - 1/18$ (Pieri et al 2009, Kamionkowski, Koushiappas, Kuhlen 2010)

 $\sim 1 - 1/3 - 1/10$ (Zavala, Springel, Boylan-Kolchin)

- Expected signal is certainly same order-of-magnitude as bound
- Fully consistent *if* star-forming galaxy BG is small, and substructure distribution is favorable

Conclusions

- If PAMELA and Fermi are signs of enhanced DM annihilation, the same physics should also leave imprints elsewhere
 - No evidence so far \Rightarrow strong constraints
- Present constraints are subject to considerable uncertainties
 - Most often talked about: uncertainties in the constraining signals
 - gal. center: halo profile, ICS, backgrounds
 - distant galaxies, outer galaxy, dwarves: substructure
 - Velocity-dependence is important for light (≤200 MeV) mediator models, affects local signals as well as constraints
 - Local substructure ⇒ less annihilation in gal. center (fast DM), comparable in CMB and dwarfs, extragalactic signals (slow DM)
 - CMB is robust but not decisive, extragal. is strong but not robust.... PLANCK in 2013: x5 improved sensitivity!
 - DM could have shown its face in many places, and didn't...but has wiggle-room left.