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The muon anomalous magnetic moment exhibits a 3:6� discrepancy between experiment and theory.

One explanation requires the existence of a light vector boson, Zd (the dark Z), with mass 10–500 MeV

that couples weakly to the electromagnetic current through kinetic mixing. Support for such a solution

also comes from astrophysics conjectures regarding the utility of a Uð1Þd gauge symmetry in the dark

matter sector. In that scenario, we show that mass mixing between the Zd and ordinary Z boson introduces

a new source of ‘‘dark’’ parity violation, which is potentially observable in atomic and polarized electron

scattering experiments. Restrictive bounds on the mixing ðmZd
=mZÞ� are found from existing atomic

parity violation results, �2 < 2� 10�5. Combined with future planned and proposed polarized electron

scattering experiments, a sensitivity of �2 � 10�6 is expected to be reached, thereby complementing

direct searches for the Zd boson.
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For a number of years, there has been a persistent dis-
agreement between the experimental value of the muon
anomalous magnetic moment, a� � ðg� � 2Þ=2

a
exp
� ¼ 116 592 089ð63Þ � 10�11 (1)

and the theoretical SUð3ÞC � SUð2ÞL �Uð1ÞY standard
model (SM) prediction

aSM� ¼ 116 591 802ð49Þ � 10�11: (2)

The above 3:6� discrepancy [1]

�a� ¼ a
exp
� � aSM� ¼ 287ð80Þ � 10�11 (3)

could be indicative of problems with the theoretical calcu-
lations and/or experimental measurements. Alternatively,
it could be a harbinger of ‘‘new physics’’ effects beyond
SM expectations [2]. One possibility, receiving support
from dark matter conjectures [3,4], envisions the existence
of a relatively light Uð1Þd gauge boson, Zd, coming from
the ‘‘dark’’ sector that indirectly couples to our world via
Uð1ÞY �Uð1Þd kinetic mixing [5], parametrized by " such
that [6]

L int ¼ �e"Z
�
d J

em
� ; Jem� ¼ X

f

Qf
�f��f; (4)

where Qf is the electric charge of fermion f. The coupling

of Zd to the weak neutral current from kinetic mixing is
suppressed at low energies because of a cancellation
between the " dependent field redefinition and leading
Z-Zd mass matrix diagonalization effects induced by " [6].
[We do not consider here the possibility that some ordinary
fermions may have explicit Uð1Þd charges.]

The Zd� �� vector current coupling in Eq. (4) gives rise
to an additional one-loop contribution [7,8] to a�

a
Zd
� ðvectorÞ ¼ �

2�
"2FVðmZd

=m�Þ; (5)

FVðxÞ �
Z 1

0
dz

2zð1� zÞ2
ð1� zÞ2 þ x2z

; FVð0Þ ¼ 1: (6)

The effect in Eq. (5) has the right algebraic sign, such
that for 10 MeV & mZd

& 500 MeV and "2 roughly in the

range 10�6–10�4, the discrepancy �a� in Eq. (3) can be

eliminated. We plot [9] in Fig. 1 the band in (mZd
, "2) space

that reduces the discrepancy to within 90% C.L., i.e.,

a
Zd
� ¼ 287� 131� 10�11: (7)

There, we also give a (roughly) 90% C.L. bound from the
electron anomalous magnetic moment [10,11] constraint

jaZd
e j< 10�11 usingme in place ofm� in Eq. (5) as well as
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FIG. 1 (color online). Dark Z boson exclusion regions (partly
adapted from Ref. [9]) in the (mZd

, "2) plane along with the band

that explains the �a� discrepancy (90% C.L.) and exclusion

regions from atomic parity violation (above the lines) for Z-Zd

mixing � values.
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a 3� aZd
� bound. Constraints from other direct experimental

searches for Zd are also given [12,13]. However, those
bounds are somewhat model dependent since they assume
the Zd decays primarily into eþe� or �þ�� pairs. They
will be diluted if, for example, Zd decays primarily into
light ‘‘dark particles’’ that escape the detector as Zd !
missing energy [6].

Recently [6], we generalized the Uð1Þd kinetic mixing
scenario to include possible Z-Zd mass mixing by intro-
ducing the 2� 2 mass matrix

M2
0 ¼

1 �"Z
�"Z m2

Zd
=m2

Z

 !
m2

Z; (8)

where mZd
and mZ (with m2

Zd
� m2

Z) represent the ‘‘dark’’

Z and SM Z masses (before diagonalization). The off-
diagonal mixing is parametrized by

"Z ¼ mZd

mZ

�; 0 � j�j< 1; (9)

where the mZd
=mZ factor allows a smooth mZd

! 0 limit

for nonconserved current amplitudes, and � is expected to
be a small quantity that depends on the Higgs scalar sector
of the theory [6]. Z-Zd mixing induced by "Z leads to an
additional coupling of Zd to fermions via the weak neutral
current

Lint ¼ � g

2 cos�W
"ZZ

�
d J

NC
�

JNC
� ¼ X

f

ðT3f � 2Qfsin
2�WÞ �f��f� T3f

�f���5f;
(10)

with T3f ¼ �1=2 and sin2�W ’ 0:23 the SM weak mixing

angle. Because of its axial-vector coupling, this new interac-
tion violates parity and current conservation. As a result, it
can lead to potentially observable effects in atomic parity
violation (APV) and polarized electron scattering experi-
ments, as well as rare flavor changing K and B or Higgs
boson decays (H ! ZZd) to longitudinally polarized Zd

bosons (phase space permitting). We pointed out in Ref. [6]
that the nonobservation of such effects already leads to
bounds j�j & 10�2–10�3 depending on mZd

and in some

cases ". Here, we further explore such constraints, but focus
on that part of parameter space 10 MeV & mZd

& 500 MeV

and j"j � 10�3–10�2 favored by a Zd explanation of the
�a� discrepancy in Eq. (3). Also, to keep our analysis

independent of the Zd decay properties, we concentrate on
low-energy parity violation, i.e., atomic and polarized elec-
tron scattering experiments. A variety of direct searches for
Zd have been discussed in the literature [6,9,12,13].

We begin by considering changes to aZd
� due to � � 0.

The additional Zd� �� vector coupling in Eq. (10) modifies
the contribution in Eq. (6) via the replacement

"2 !
�
"þ "Z

1� 4sin2�W
4 sin�W cos�W

�
2 ’ ð"þ 0:02"ZÞ2; (11)

where sin2�W ’ 0:24 appropriate for low Q2 ’ m2
� scales

[14] has been employed. For the�a� favored range ofmZd

and "2 in Fig. 1, the shift in Eq. (11) is small (& 2%) for all
� and can be ignored.
The axial-vector part of the Zd� �� coupling in Eq. (10)

gives rise to a negative contribution [8]

aZd
� ðaxialÞ ¼ � GFm

2
�

8
ffiffiffi
2

p
�2

�2FAðmZd
=m�Þ

’ �117� 10�11�2FAðmZd
=m�Þ (12)

FAðxÞ �
Z 1

0
dz

2ð1� zÞ3 þ x2zð1� zÞðzþ 3Þ
ð1� zÞ2 þ x2z

; (13)

where GF ’ 1:166� 10�5 GeV�2, FAð0Þ ¼ 1, and
FAð1Þ ¼ 5=3. For �2 & 0:1 (a mild requirement [6]),
that contribution is also negligible throughout the �a�
favored region in Fig. 1. So, we conclude that the
effect of Z-Zd mass mixing plays little direct role in any
discussion of the �a� discrepancy and its interpretation as

due to "2.
Next, we examine constraints on themZd

, ", � parameter

space coming from low-energy, parity-violating experi-
ments and their implications for a Zd interpretation of the
�a� discrepancy.

It is well known that the classic cesium atomic parity-
violation experiment [15] provides a stringent constraint
on heavy Z0 bosons [16] that violate parity, often implying
mZ0 * Oð1 TeVÞ. However, its application to relatively
light gauge bosons such as Zd has been less explored.
Such a connection was first made by Bouchiat and Fayet
[17] for a light ‘‘U boson’’ with very general parity violat-
ing couplings to fermions. They found strong constraints
and argued against axial-vector couplings. We recently [6]
revisited the application of low-energy parity violation
experimental constraints within the general Z-Zd mass
mixing formalism of Eq. (8). We updated the cesium
constraint to include more recent atomic theory [18], ex-
panded the analysis to polarized electron scattering [19],
and applied our study specifically to the ‘‘dark’’ Z boson.
Here, we focus on the connection of that analysis with the
�a� discrepancy and its interpretation via 10 MeV &

mZd
& 500 MeV with "2 � 10�6–10�4.

The additional parity violation from Eq. (10) manifests
itself as replacements in low-energy SM parity violating
weak neutral current amplitudes [6]

GF ! �dGF; sin2�W ! 	dsin
2�W; (14)

where for (momentum transfer) Q2 ¼ �q2

�d ¼ 1þ �2fðQ2=m2
Zd
Þ; (15)

	d ¼ 1� "�
mZ

mZd

cos�W
sin�W

fðQ2=m2
Zd
Þ (16)

giving rise to
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�sin2�W ’ �0:42"�
mZ

mZd

fðQ2=m2
Zd
Þ: (17)

As pointed out in Ref. [17], for parity violation in heavy
atoms, such as cesium, there is a correction factor f ¼ KðCsÞ
relevant for very small mZd

. For example, KðCsÞ ’ 0:5 at

mZd
’ 2:4 MeV, which sets the typical momentum transfer

hQi in this case, whereas KðCsÞ ’ 0:74, 0.98 at mZd
’ 10,

100 MeV. In the case of polarized electron scattering asym-
metries, the Zd propagator effect gives

fðQ2=m2
Zd
Þ ¼ 1

1þQ2=m2
Zd

(18)

with hQi ranging from 50–170 MeV for the experiments we
consider.

Currently, the SM prediction for the weak nuclear charge
QWðZ;NÞ ’ �N þ Zð1� 4sin2�WÞ in the case of 133

55 Cs
(including electroweak radiative corrections) [20]

QSM
W ð13355 CsÞ ¼ �73:16ð5Þ (19)

is in excellent agreement with experiment (including the
most up-to-date atomic theory) [15,18]

Qexp
W ð13355 CsÞ ¼ �73:16ð35Þ: (20)

The 90% C.L. bound on the difference

j�QWðCsÞj ¼ jQexp
W ð13355 CsÞ �QSM

W ð13355 CsÞj< 0:6 (21)

can be compared with the potential Zd contribution [6]

�QWð13355 CsÞ ¼
�
�73:16�2 þ 220"�

mZ

mZd

sin�W cos�W

�

� KðCsÞ: (22)

In principle, there could be a cancellation between the
two terms in Eq. (22) for "ðmZ=mZd

Þ � 0:8�. However, for

the �a� preferred band in Fig. 1, j"ðmZ=mZd
Þj * 2; the

second term in Eq. (22) always dominates. In fact, a
conservative self-consistent assessment of the bound (at
90% C.L.) from Eqs. (21) and (22) yields

j�2 � 2�j< 0:008 ! �2 < 2� 10�5 (23)

for the entire�a� motivated band in Fig. 1. That means the

first term in Eq. (22) can be neglected and the QWð13355 CsÞ
bound becomes for arbitrary "2 andmZd

essentially a bound

"2 <
4� 10�5

�2K2

�
mZd

mZ

�
2

(24)

on the allowed sin2�W shift. The atomic parity violation
bound on "2 is illustrated in Fig. 1 for various values of �2.
Note that for �2 * 2� 10�5, the entire �a� discrepancy

motivated band is already ruled out. Alternatively, if a light
Zd is responsible for the�a� discrepancy, the Z-Zd mixing

j"Zj ¼ jðmZd
=mZÞ�jmust be very tiny (�2 < 2� 10�5). Of

course, the �a� discrepancy may have nothing to do with

Zd. In that case, larger �2 values can be accommodated by
going to smaller "2 or larger mZd

values, although other

constraints [6] then come into play.
Atomic parity violation already provides a powerful

constraint on �2 over an interesting mZd
range. Future

experiments employing ratios of isotopes could, in princi-
ple, eliminate the atomic theory uncertainty and further
probe Zd mass and mixing as well as other ‘‘new physics’’
scenarios [21].
Another type of low-energy, parity-violating experiment

involves polarized electron scattering on electrons, pro-
tons, or other targets. They measure the parity-violating
asymmetry [19] ALR � �L � �R=�L þ �R due to �-Z
interference at low Q2. In some cases, such as ee and ep,
those experiments are particularly sensitive to sin2�W at
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FIG. 2 (color online). Dark Z boson exclusion regions from various parity violating experiments (existing and proposed) and their
combined sensitivity for �2 ¼ 10�5 (left) and 10�6 (right) at 90% C.L.
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low Q2, where the effective sin2�W is expected [14] to be
about 0.24, thereby leading to very small asymmetries
(proportional to 1–4sin2�W). Already, experiment E158
at SLAC has measured [22] (evolving to Q2 ¼ m2

Z)

sin 2�WðmZÞMS ¼ 0:2329ð13Þ ðE158 at SLACÞ; (25)

which is to be compared with the Z pole average [1]

sin 2�WðmZÞMS ¼ 0:23125ð16Þ: (26)

The relatively good agreement between Eqs. (25) and (26)
already constrains many types of ‘‘new physics’’ at a
sensitivity similar to APV. In the case of Zd at low masses,
cesium APV has the advantage of a low [17] hQi ’
2:4 MeV while for E158, hQiE158 ’ 160 MeV such that
Zd propagator effects suppress the sensitivity by
m2

Zd
=ðQ2 þm2

Zd
Þ at the amplitude level.

A comparison of E158 constraints, using [see Eq. (17)]

"2 <
6� 10�5

�2

�0:026 GeV2 þm2
Zd

mZmZd

�
2

(27)

with APV, is illustrated in Fig. 2. The one-sided 90% C.L.
coefficient in that bound has been increased due to the
�1� difference between Eqs. (25) and (26). For a given �2,
the bounds at largemZd

are similar, but APV is superior for

mZd
& 160 MeV.

An ongoing polarized ep experiment [9,23], Qweak at
JLAB, aims to measure sin2�W to �0:0007 at hQi ’
170 MeV. That represents an improvement by about a
factor of 2 over E158, but the similar hQi means that it
also lacks low mZd

sensitivity. In the longer term, a new

polarized ee (Moller) [24] experiment at JLAB would
measure sin2�W to �0:00029 at hQi ’ 75 MeV, and a
very low-energy polarized ep experiment at a new pro-
posed MESA facility [25] in Mainz, Germany, would
measure sin2�W to �0:00037 for hQi perhaps as low as
50 MeV. The sensitivities of these (proposed) experiments
are also illustrated in Fig. 2, using the constraints in Table I
derived from Eq. (17).

In Fig. 2, we give a combined sensitivity bound for
�2 ¼ 10�5 and �2 ¼ 10�6 from all existing and proposed
low-energy, parity-violating experiments. That plot illus-
trates the complementarity of atomic and polarized elec-
tron scattering experiments. In addition to providing
overlapping probes of new physics, collectively they
span a large range of (mZd

, "2) space and probe down to

�2 of Oð10�6Þ. Of course, it is possible that a light Zd

exists that is consistent with the �a� discrepancy and

will be discovered. For example, if mZd
’ 75 MeV, j"j ’

3� 10�3 and j�j ’ 2� 10�3, the proposed Moller and
MESA experiments should find shifts j�sin2�W j ’ 0:0015
and 0.0021, respectively, corresponding to about 5� dis-
covery sensitivities.
In conclusion, we have found that existing atomic

parity-violating results already require �2 & 2� 10�5 for
the entire range of (mZd

, "2), i.e. 10 MeV & mZd
&

500 MeV, "2 ’ 10�6–10�4, favored by the Zd interpreta-
tion of the �a� discrepancy. That requirement calls into

question the Zd interpretation of the �a� unless Z-Zd

mixing is naturally small, for example, if the mass mZd
is

primarily generated by an SUð2ÞL �Uð1ÞY Higgs singlet
[6]. Future polarized electron scattering experiments will
provide additional Zd sensitivity, particularly for mZd

*

75 MeV (where 5� effects are possible) and will nicely
complement atomic parity-violation experiments as well as
direct Zd searches.
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