A Search for Beyond the Standard Model Particles with the PHENIX detector at RHIC

Yorito Yamaguchi for the PHENIX collaboration CNS, Univ. of Tokyo

CENTER for

NUCLEAR STUDY NIX

Introduction

Dark photon, U

- - \checkmark Mixing in the ordinary photons with the mixing parameter, ϵ^2
 - ✓ MeV ~ GeV mass scale
 - ✓ Explain the results which cannot be described by SM
 - Positron excess in the universe (PAMELLA & AMS)
 - Muon g-2 anomaly (E821@BNL)

Positron excess in the universe Discrepancy of $a_{\mu} = (g-2)_{\mu}/2$ from SM prediction

Search in π^0 Dalitz decays

2/8

<u>Measurement of $\pi^0 \rightarrow \gamma \cup \rightarrow \gamma e^+e^-$ in π^0 Dalitz decays</u>

- ↔ Detection of e⁺e⁻ pairs from the dark photons in the π⁰ Dalitz decayed e⁺e⁻ pairs
 - ✓ The dark photon exclusively decays into e⁺e⁻ pair.
 - ✓ Its natural width is practically zero.
 - Expected peak width = mass resolution

Important requirements for the dark photon search

1. A large data samples of e^+e^- from π^0 Dalitz decays

2. A very good mass resolution of e⁺e⁻

Current dark photon mapping^{3/8}

Getting more important as a candidate of the cause for the muon g-2 anomaly due to the recent SUSY result at LHC
Short-term aim: Covering the entire region of the muon g-2 explainable band

PHENIX experiment at RHIC 4/8

Originally designed for the study of Quark Gluon Plasma

✓ Good momentum resolution

✓ High precision for eID

→ High statistics of e⁺e⁻ from π⁰ Dalitz decays in p+p (2006) & d+Au (2008) at 200GeV

✓ 1.3M e⁺e⁻ pairs

✓ Small background contribution in m_{ee}<100MeV</p>

- Data looks agreement with hadronic cocktail calculation.
- $\checkmark \sigma_{ee}$ is about 3MeV calculated from well-tuned simulation.

Confidence level calculation ^{6/8}

- ✓ Widely accepted way to compute confidence levels for hypotheses with limited signal sensitivities
 - Famous "Brazil band plot" for Higgs search at LHC
- ✓ Relative likelihoods of how well the data is described by:
 - a. Only background (Dalitz continuum)
 - b. Signal (dark photon) + Background

Famous ATLAS Brazil band plot

Dark photon limit

Dark photon limit

 \sim 1, 2 σ statistical fluctuations of the expected reach

Dark photon limit

♦ Expected reach with 1.3M events & 3MeV of σ_{ee}
♦ 1, 2σ statistical fluctuations of the expected reach
♦ Observed upper limit with the PHENIX detector
✓ Including systematic errors from uncertainties on the Dalitz

continuum & σ_{ee}

Summary and outlooks

Current status

- Dark photon search is being conducted at the PHENIX experiment.
 - \checkmark Searching for the dark photon in π^0 Dalitz decays
 - ✓ 1.3M pairs in p+p (2006) and d+Au (2008) datasets
 - ✓ Good mass resolution at PHENIX ~ 3MeV
 - \rightarrow Improved upper limit of the dark photon in 30-90MeV
 - Addition of statistics from the 2009 p+p data is ongoing.

Outlooks

- Possibility to search for long-lived dark photons with smaller mixing parameter
 - Expected Dalitz statistics in the 2014 Au+Au data = more than 15M events
 - Background-less measurement with secondary vertex requirement