<div dir="ltr"><div><div><div>Hi Valery, all,<br><br></div>Yes, I think their prospects look very exciting and if they hold up will completely change the landscape below 100 MeV. One thing worth noting is the timeline -- as they say, the search relies on Run 3 upgrades and the full run-3 dataset (currently planned for <span class="">2020-2023). <br><br>I also don't know whether they have discovery potential in "Mont's gap" or only exclusion...<br></span></div><div><span class=""><br></span></div><span class="">Best,<br></span></div><span class="">Natalia<br></span></div><div class="gmail_extra"><br><div class="gmail_quote">On Thu, Sep 24, 2015 at 10:48 AM, Valery Kubarovsky <span dir="ltr"><<a href="mailto:vpk@jlab.org" target="_blank">vpk@jlab.org</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">LHCb will cover<br>
LHCb can explore nearly all of the dark photon parameter space between existing prompt-$A^{\prime}$ and beam-dump limits for heavy photon mass < 100MeV.<br>
<br>
<br>
[2] arXiv:1509.06765 [pdf, other]<br>
Dark photons from charm mesons at LHCb<br>
Philip Ilten, Jesse Thaler, Mike Williams, Wei Xue<br>
Comments: 18 pages, 11 figures, 1 table<br>
Subjects: High Energy Physics - Phenomenology (hep-ph); High Energy Physics - Experiment (hep-ex)<br>
We propose a search for dark photons $A^{\prime}$ at the LHCb experiment using the charm meson decay $D^*(2007)^0 \!\to D^0 A^{\prime}$. At nominal luminosity, $D^{*0} \!\to D^0 \gamma$ decays will be produced at about 700kHz within the LHCb acceptance, yielding over 5 trillion such decays during Run 3 of the LHC. Replacing the photon with a kinetically-mixed dark photon, LHCb is then sensitive to dark photons that decay as $A^{\prime}\!\to e^+e^-$. We pursue two search strategies in this paper. The displaced strategy takes advantage of the large Lorentz boost of the dark photon and the excellent vertex resolution of LHCb, yielding a nearly background-free search when the $A^{\prime}$ decay vertex is significantly displaced from the proton-proton primary vertex. The resonant strategy takes advantage of the large event rate for $D^{*0} \!\to D^0 A^{\prime}$ and the excellent invariant mass resolution of LHCb, yielding a background-limited search that nevertheless covers a sig!<br>
nificant portion of the $A^{\prime}$ parameter space. Both search strategies rely on the planned upgrade to a triggerless-readout system at LHCb in Run 3, which will permit identification of low-momentum electron-positron pairs online during data taking. For dark photon masses below about 100MeV, LHCb can explore nearly all of the dark photon parameter space between existing prompt-$A^{\prime}$ and beam-dump limits.<br>
<br>
_______________________________________________<br>
Hps mailing list<br>
<a href="mailto:Hps@jlab.org">Hps@jlab.org</a><br>
<a href="https://mailman.jlab.org/mailman/listinfo/hps" rel="noreferrer" target="_blank">https://mailman.jlab.org/mailman/listinfo/hps</a><br>
</blockquote></div><br><br clear="all"><br>-- <br><div class="gmail_signature"><div dir="ltr"><div><div>Natalia Toro<br>Perimeter Institute<br></div>31 Caroline St N, Waterloo, ON<br></div>(519) 569-7600 x8725<br></div></div>
</div>