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Abstract

Extra dimensions can be very useful tools when constructing new physics models. Previously,
we began investigating toy models for the 5-D analog of the kinetic mixing/vector portal scenario
where the interactions of bulk dark matter with the brane-localized fields of the Standard Model
are mediated by a massive U(1)D dark photon also living in the bulk. In that setup, where the
dark matter was taken to be a complex scalar, a number of nice features were obtained such as
U(1)D breaking by boundary conditions without the introduction of a dark Higgs field, the absence
of potentially troublesome SM Higgs-dark singlet mixing, also by boundary conditions, the natural
similarity of the dark matter and dark photon masses and the decoupling of the heavy gauge Kaluza-
Klein states from the Standard Model. In the present paper we extend this approach by examining
the more complex cases of Dirac and Majorana fermionic dark matter. In particular, we discuss a new
mechanism that can occur in 5-D (but not in 4-D) that allows for light Dirac dark matter in the ∼ 100
MeV mass range, even though it has an s-wave annihilation into Standard Model fields, by avoiding
the strong constraints that arise from both the CMB and 21 cm data. This mechanism makes use
of the presence of the Kaluza-Klein excitations of the dark photon to extremize the increase in the
annihilation cross section usually obtained via resonant enhancement. In the Majorana dark matter
case, we explore the possibility of a direct s-channel dark matter pair-annihilation process producing
the observed relic density, due to the general presence of parity-violating dark matter interactions,
without employing the usual co-annihilation mechanism which is naturally suppressed in this 5-D
setup.
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1 Introduction

Although its true nature remains in the realm of speculation, the presence of dark matter (DM) clearly
signals the existence of new physics beyond the Standard Model (SM). However, we don’t yet know if
DM interacts other than gravitationally with the SM. Models that attempt to calculate the observed DM
relic density generally postulate that such interactions must exist but they are likely to be far weaker
that the known weak interactions of the SM. Until rather recently, Weakly Interacting Massive Particles
(WIMPS) [1] and axions [2, 3] were the leading contenders for DM as their existence arises from UV-
complete frameworks, such as Supersymmetry, or from attempts to address other issues, such as the
strong CP problem. While the very important searches for these particles are continuing, the lack of any
positive evidence for these scenarios necessitates that we widen our scope of potential DM candidates
as well as the techniques to look for them [4, 5]. One scenario which is gotten significant attention is
the kinetic mixing/vector portal model [6, 7] wherein one posits a new dark U(1)D gauge field, the dark
photon (DP), as a mediator of the interaction between DM and the SM. This interaction is generated via
the kinetic mixing (KM) of this new gauge field with the SM hypercharge U(1)Y via loops of particles
charged under both gauge groups and is characterized by a mixing strength parameter ε ∼ 10−(3−4) or
so. For DM and DP in the ∼ 10−1000 MeV range, this interaction is strong enough for the cross section
of DM annihilating into to SM particles to be of the right magnitude required for the DM to reach its
observed abundance via the familiar freeze out (FO) mechanism, i.e., the DM here is a thermal relic
as in the WIMP scenario. The general parameter space of this model framework is being explored by
multiple existing experiments and will be explored even further by numerous future planned experiments
employing various innovative techniques [4, 5].

Extra dimensions (ED) are a useful tool for building interesting models of new physics to address
outstanding issues [8]. In our earlier paper [9], hereafter referred to as I, we examined a toy 5-D version
of the KM model assuming a single, flat, extra dimension [10,11] which could be described as a bounded
interval of size R−1 ∼ 10 − 1000 MeV with the SM fields living on one of the brane boundaries as 4-D
objects while the DM and DP experienced the full 5-D. In I, in addition to discussing the general setup for
such an approach, we considered the case where the DM was a complex scalar field, S, such that the DM
annihilation process was automatically a p-wave process. This easily avoids, as in 4-D, the well-known
strong constraints on this cross section arising from the CMB at z ∼ 600 [12,13] and more recently from
21 cm measurements at z ∼ 17 [14–16]. The p-wave nature of the annihilation process allows it to be
velocity-squared suppressed at later times (due to lower temperatures) but still large enough to yield the
necessary rate at FO to produce the observed DM abundance. In addition to providing new experimental
signatures to search for, this framework accomplished several interesting things: (i) The lightest field in
the DP Kaluza-Klein (KK) tower could obtain its mass via boundary conditions (BCs) without the need
to introduce a dark SM singlet Higgs field which obtains a vev and spontaneously breaks the U(1)D. (ii)
The DP and DM masses are naturally of the same order ∼ R−1 without any tuning. (iii) The mixing
of S with the SM Higgs can be negated in some cases via a choice of BCs thus avoiding potentially
dangerous exotic Higgs decays; this can only be done by fine-tuning in 4-D. (iv) The higher KK modes
of the DP were shown to necessarily decouple from the SM. Further, given the very weak coupling of the
dark sector to the SM, we saw that ordinary SM physics is shielded from most of the internal dynamics
of this (Abelian) dark sector even if it becomes somewhat strongly coupled at high mass scales.

In the present paper we extend our previous study to the case where the DM is a fermion. In 4-D,
in such a situation, only Majorana fermions are allowed as DM since they naturally lead to a p-wave
or a co-annihilation process. On the otherhand, Dirac DM annihilating via a spin-1 DP mediator is
necessarily an s-wave, velocity-independent process and so is excluded by the discussion above. As we
will see below, however, going to 5-D allows for a new mechanism, occurring through the destructive
interference of DP KK exchanges, that can produce a sufficiently large annihilation cross section at FO
while the same process is simultaneously highly suppressed at lower temperatures in a manner similar to
resonant enhancement. The generalization of the 4-D Majorana DM scenario to 5-D will also be seen to
bring something new. Not only do these fermions couple in an ‘off-diagonal’ manner to the DP (allowing
for co-annihilation when the splitting between the mass eigenstates is small) but also a diagonal coupling
term can be generated. This, as we will see, originates from the fact that the DM couplings to the DP
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KK tower are generally not vector-like as they are in 4-D and this allows for a direct p-wave annihilation
process that is effective even when the Majorana mass splitting of the DM with its heavier partner is
large. Both of these fermionic model possibilities can lead to exotic signatures at the experiments that are
searching for the production of DP. Of course, we remind the reader that these are only incomplete toy
models at this point and should be understood as suggestive frameworks for more complete constructs.
However, these successes indicate that more realistic versions of the models of the type discussed here
need to be pursued.

The outline of this paper is as follows: In Section 2, we first provide a summary of the common 5-D
bulk gauge and scalar physics from I that will be required in our subsequent analyses. As we will see,
the detailed nature of the bulk scalar (beyond its having a vev) is mostly irrelevant to this setup as it
plays no essential role in the DM annihilation or scattering processes. We then discuss the case of a
SM singlet, 5-D bulk fermion with a Dirac mass as DM (Model 3) and introduce a mechanism, which is
the KK generalization of the familiar resonance enhancement scenario, which would allow for s-channel
DM annihilation. The required enhancement of the freeze-out annihilation cross section in comparison
to that near T ∼ 0 is shown to be of order 104. The necessary conditions for this mechanism to function
properly are discussed and then a scan of the model parameter space is performed to identify regions
where these are satisfied so that the mechanism can be operative. The specific predictions and properties
of several benchmark points having the desired properties in the relevant successful parameter region are
then discussed in some detail. In particular, it is noted that the DM KK tower states generally can have
parity-violating couplings to the DP gauge KK states but with a fixed coupling pattern. The DM direct
detection cross section in this scenario is shown to be quite small but may be potentially observable.
In this scenario, experimental DP searches for either e+e− or missing energy final states should observe
signals originating from the decays of lightest two gauge KK tower modes. Section 3 contains a discussion
of the case of DM being a Majorana fermion (Model 4). Here we choose the dark charge of the previously
introduced bulk scalar such that it can produce a Majorana mass term after SSB which then splits the
previous Dirac state into two, generally far from degenerate, Majorana states. With the lightest of these
being identified as the DM, we find that co-annihilation is generally not effective in this setup due to
the naturally large mass splitting. However, due to the parity-violating fermion couplings, a p-wave
annihilation channel via the DM axial-vector coupling to the DP is shown to exist, something not found
in the 4-D models. We again introduce a pair of benchmark scenarios to examine the details of this
setup. In this model class, the elastic direct detection process is shown to be loop suppressed while
inelastic scattering is kinematically forbidden due to the previously mentioned large mass splitting. The
production signals for the DP KK states in this scenario are shown to be potentially more complex than
in the Dirac case. Section 4 contains a Summary and our Conclusions.

2 Model 3: Dirac Fermion Dark Matter

As is well-known, and as discussed in I, data from the CMB and more recently from 21 cm measurements
as discussed above, highly constrain DM annihilation into, e.g., e+e− final states in our mass range of
interest. These results exclude cross sections even remotely approaching the canonical thermal freeze-
out (FO) value required to reproduce the observed relic density [17] by factors of order >∼ 102−4, with
the stronger (weaker) constraint applying to lighter (heavier) DM masses. This is a particular problem
if the DM annihilation is an s-wave process as in this case < σvrel > is roughly velocity/temperature
independent so that the value at the time of FO, the CMB (z ∼ 600), the 21 cm measurements (z ∼ 17)
and today (z = 0) will be essentially identical. In 4-D, in addition to excluding DM masses in excess of
that of the DP (which will lead to an s-wave annihilation process with a pair of a spin-1 mediators in the
final state), the choice of DM being a Dirac fermion is excluded as this annihilation process, occurring via
DP exchange, is necessarily s-wave. At the very upper end of the DM range of interest to us, >∼ 1 GeV,
where, e.g., the CMB data alone requires that < σvrel >CMB / < σvrel >FO<∼ 10−2, one may be able to
evade this constraint by employing a standard resonance enhancement mechanism during FO [18]. The
essential idea is that at FO, the larger thermal velocities of the DM push their center of mass collision
energy upwards toward the DP resonance peak (provided the DM mass relative to that of the DP is
properly tuned) but then falls back to smaller values for the lower temperatures during the CMB and
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later eras. However, the 21 cm constraints, taken at face value, would be roughly an order of magnitude
more demanding for which the conventional resonance enhancement would be inadequate unless the DM
is even more massive. Furthermore, it is clear that such a mechanism will be insufficient for satisfying
the weaker CMB bound alone for lower DM masses of order 10 MeV or even 100 MeV. Clearly, if we
want to evade these bounds for Dirac DM in this mass range some other, more powerful enhancement
mechanism must be active. The fact that we are working in 5-D can provide for the existence of such a
mechanism to which we now turn.

Figure 1: (Top) T = 0 DM annihilation cross section (in arbitrary units) in the simple toy model discussed
in the text. The red(blue) curve corresponds to the case of same-sign (alternating sign) couplings.
(Bottom) The upper bound on a, i.e., amax as a function of δA in the general vicinity of δA = 1.

To get the basic idea, we first consider two very similar versions of a simple toy model for the
interaction of Dirac DM with the DP KK tower states assuming for purposes of demonstration that the
magnitude of the product of the DM/SM couplings are the same for each KK level and that the DP
tower masses are given by MVn/MV1 = 2n − 1, qualitatively similar to the more realistic models to be
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discussed below. Then, again qualitatively, σ0 = σvrel for DM pair annihilation into SM final states as a
function of r =

√
s/2MV1 ≤ 3 is given, apart from an irrelevant overall factor, in the upper panel of Fig. 1

when all of the gauge KK couplings are the identical (red) and where they have the same magnitude but
alternate in sign (blue). Here we see a phenomena that has been well known since the early days of KK
phenomenology: when all the couplings have the same sign there is a narrow, very strong destructive
interference region lying between the first two KK resonances, which in fact, in this simple toy example
lies exactly halfway between them at r = 2. Note that this strong destructive interference is absent
when the sign of the couplings alternate and σ0 behaves ‘normally’ between the first two KK resonances.
Further note that when this destructive interference is present the ratio of the minimum cross section
value between the two KK peaks to that at the top of the second KK peak can be as large as ∼ 105 or
even greater. Thus we can imagine that if we can arrange for σ0 during the CMB/21 cm (and in the
present) era to correspond to that obtained near r = 2 here while during FO a larger value of r is more
representative due to T 6= 0 effects (and so σ0 is significantly larger) then we may be able to evade the
Dirac fermion s-channel cross section constraints. We will refer to this modified version of the traditional
resonance enhancement setup as the KK-mechanism. Of course this simple toy model is not applicable
in a more realistic situation since we know from our earlier work that, e.g., amongst other factors, (i)
the KK gauge masses will not be equally spaced, (ii), the relevant couplings of the DM initial state and
SM final state will both vary as one ascends the gauge KK tower and will generally oscillate in sign, and
that (iii) the destructive minimum must occur at smaller values of r than in the simple toy model since
we still must insure that mDM < MV1

to avoid DM pair annihilation into the 2V1 final state process.
It is also obvious that we need to move the deep destructive interference minima closer to the second
resonance peak to allow T 6= 0 affects to push the cross section to significantly larger values. Whether or
not we can discover a set of model points in our parameter that has the necessary flexibility to achieve
our desired goals while satisfying all other constraints is a non-trivial challenge. To get there we must
first examine the details of the Dirac DM scenario.

Along the familiar lines as in our previous 5-D constructions, consider a setup which has the following
components: a flat ED interval described by a co-ordinate 0 ≤ y ≤ πR with two 4-D branes bounding
either end and with the SM living on the y = 0 brane. In the bulk, we have the familiar 5-D U(1)D gauge
field V̂ A which kinetically mixes with the SM hypercharge field, B̂µ, on the SM brane and which must
have a brane localized kinetic term (BLKT) [19], described by a parameter δA, also on the SM brane
for the reasons described in I. The bulk also contains a SM singlet, DM fermion field, X, which has a
5-D Dirac mass, mD, and that has a dark gauge charge QD(X) = 1. A complex, SM singlet scalar, S
is also present in the bulk with QD(S) = QD and whose potential leads to a non-zero vev for this field,
vs. This complex scalar is not required to have a BLKT although this addition is straightforward. Note
that a coupling of the form X̄XS is forbidden by gauge invariance so that in the 4-D theory there will
be no renormalizable coupling between the Dirac fermion and scalar field towers. The full action for this
scenario then takes the form

S = S1 + S2 + SBLKT + SHS (1)

where the various pieces are given by

S1 =

∫
d4x

∫ πR

0

dy
[
− 1

4
V̂ABV̂

AB +
(
− 1

4
B̂µνB̂

µν +
ε5

2cw
V̂µνB̂

µν + LSM

)
δ(y)

]
, (2)

describes the SM plus pure 5-D gauge interaction including the KM on the 4-D brane. The hatted fields
must undergo field redefinitions to bring this term into canonical form and, as usual, DA = ∂A+ig5DQDV̂A
is the gauge covariant derivative in obvious notation.

S2 =

∫
d4x

∫ πR

0

dy
[
iX̄ΓADAX −mDX̄X + (DAS)†(DAS) + µ2

SS
†S − λS(S†S)2

]
(3)

describes the bulk fermion and scalar pieces with ΓA being the 5-D gamma matrices and

SBLKT =

∫
d4x

∫ πR

0

dy
[
− 1

4
V̂µν V̂

µν · δAR δ(y)
]

(4)
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describes the gauge BLKT term on the SM 4-D brane. Finally, the action also contains the potentially
dangerous term

SHS =

∫
d4x

∫ πR

0

dy λHSH
†HS†S δ(y) (5)

with H being the SM field, which we can either render benign as in I by choice of BCs or we can simply
perform an appropriate fine-tuning of λHS as in 4-D.

With such a large compactification radius as we consider here one might have concerns that the dark
sector U(1)D gauge theory may become strongly coupled before we reach the ∼ 100 GeV weak scale
relevant for the SM. We can use Naive Dimensional Analysis (NDA) to estimate this scale: ΛNDA ∼
16π2/g25D ∼ 16π2/(g24DR). For a lightest gauge KK mass mV1

∼ 100 MeV and gD = g4D ∼ 0.1, typical
of what we will deal with below, one obtains ΛNDA ∼ 3.2 − 3.5 TeV which is fairly safe as such large
mass scales will not be remotely approached in the discussions below. Note that this scale corresponds
to roughly NKK ∼ ΛNWAR ∼ 104 KK levels before the onset of strong coupling. Also, as noted in I, the
SM is itself shielded from any potential dark sector strong coupling by the tiny sizes of the couplings to
the more massive gauge KK states.

As described in I, after field redefinitions the gauge and scalar parts of the present Model 3 are
essentially those given by Model 2, except for the interchange of the roles of the y = 0 and y = πR
branes, which leads to some minor changes, and the fact that the dark charge of S is here not restricted,
with the bulk Dirac fermion being essentially the only new element. Given these small changes, let us
briefly summarize some essential aspects of Model 2 with these differences incorporated.

The vev of the dark Higgs, S, produces a bulk mass for the dark gauge field so that masses of the
corresponding KK tower fields, Vn, are given by

m2
Vn

=
(xVn
R

)2
+ (g5DQDvs)

2 , (6)

where the roots xVn are found to be given by the solutions of the equation

cotπxVn =
δA

2xVn

[
(xVn )2 + (g5DQDvsR)2

]
= Ωn (7)

with the useful dimensionless combination of roughly O(1) factors a = (2gDQ5DvsR)2 frequently appear-
ing in the discussions to follow. For each value of the BLKT parameter, δA, one finds that there is a
maximum value for the parameter a, amax = 8/(πδA) (and vice versa) which is shown in the lower panel
of Fig. 1. This boundary is easily seen as arising from the root equation and corresponds to locations
where the lowest lying gauge root is being driven to zero. If larger values of a were considered, then
imaginary values for this lowest root would be obtained although physical masses for the lightest gauge
mode might still be possible depending upon the specific value of a over a narrow range. This bound
will play an important role in the discussion that follows as will be the flexibility to adjust the relative
contributions of this bulk mass term and the ‘geometric’ piece ∼ 1/R to the total masses of lowest gauge
KK excitations. This is so since we need to have the ratio of the masses of next to lightest to the lightest
KK state to be < 2 for the KK-mechanism to work. The mass of the lightest gauge KK state as functions
of both δA, a are shown in Fig. 2. The gauge tower 5-D wavefunctions are given by

vn(y) = NV
n

(
cosxVn φ−

1

t
sinxVn φ

)
(8)

where we employ φ = y/R with t = tanπxVn = Ω−1n and where the normalization is given by

(NV
n )2 =

2

πR

[
1 + Ω2

n +
δA
π
− Ωn
πxVn

]−1
, (9)

so that the effective KM parameters for the gauge KK tower states are given by εn = ε5N
V
n as before.
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Figure 2: (Top) Lightest gauge KK mass as a function of δA for a = 0(0.5, 1, 1.5, 2) corresponding to
the red (blue, green, magenta, cyan) curve. (Bottom) Same as above but with the roles of a and δA
interchanged. Note that that the curves terminate due to the amax bound as discussed in the text.
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As discussed in I, the vev of the complex scalar S splits this field into a set of CP-even fields, hn, and
a set of CP-odd fields, φn (as S → (vs +h+ iφ)/

√
2), which will in general mix with the fifth component

of the gauge KK fields, V5n, to form the Goldstone bosons, Gn, and a set of physical CP-odd fields, an.
Actually, since S does not couple to the the bulk fermion field X, as we will discuss below, it plays no
important role in our discussion here (outside of it having a vev) and we can be quite agnostic about it
as long as we insure that the lightest physical h, a KK states are more massive than the lightest fermion
tower state (i.e., the DM) which can easily be done by judicious parameter choices. For simplicity and
to be definitive, we here follow I and employ the results in Ref. [20] although we stress that this choice
isn’t necessary for any of the development below. Following, e.g., [20], we then have

Gn =
σnV5n + g5DQDvsφn

(σ2
n + (g5DQDvs)2)1/2

an =
σnφn − g5DQDvsV5n

(σ2
n + (g5DQDvs)2)1/2

, (10)

where σn = (n+1/2)/R 1. Note that we shift the field S and rewrite the action in terms of h, φ first before
applying any BCs to the solutions of the equations of motion of these fields. The Goldstone bosons are,
as usual, absent in the unitary gauge in which we will work, while the an KK tower fields acquire physical

masses that are given by [20] m2
an = (n+1/2

R )2+(g5DQDvs)
2. The hn masses are correspondingly given by

m2
hn

= (n+1/2
R )2+2λSv

2
s ; here the dimensionless parameter combination h = 8λSv

2
sR

2 will become useful.
As we will see below, unlike in I, we will concentrate on scenarios where the mass hierarchy of the lowest
KK modes is given by mχ1

< mV1
< mh1

< ma1 where mχ1
is the Dirac fermion DM mass. (Of course it

is always possible to choose a different mass ordering of a1 and h1 without it having any influence on the
fermion DM phenomenology we will discuss here as h, a play no important roles as discussed above.) Note
that this choice of mass hierarchy requires that the ratio of parameters h/a = 2λS/(g5DQD)2 < 1 and
that mV

1 < ma
1 which both are easily satisfied over a large part of the parameter space. The constraint

mV1
< mh1

will place a lower bound on the ratio h/a; since neither h1 nor a1 are to be DM, unlike in
I, we can permit them to decay rather rapidly. As in I, the couplings among the dark scalars and gauge
fields (in units of QD) are determined by the integrals over the products of the 5-D wavefunctions which
takes the general form (where the cos θm is the mixing factor defined above)

gD · cimn = g5D

∫ πR

0

dy cos θm am(y)hn(y)vi(y) . (11)

Note that since there will be both scalar and fermion fields coupling to the gauge KK tower in this model,
it is convenient to define the 4-D gauge coupling here simply in terms of the normalization/geometric
factors as

gD = g5D R
( 2

πR

)3/2
. (12)

We imagine for numerical calculations that gD ∼ 0.1 or so. We again stress that these scalars will not
play any significant role in what follows outside the existence of the vev itself since they do not mediate
any important interactions.

We now turn our attention to the equations of motion for the left- and right-handed components of
the fermion field, X; we will denote their wavefunctions by fL,Rn (y) so that the KK decomposition of X
in the action above is given by

X =
∑
n

(
PLf

L
n (y)χLn(x) + L→ R

)
, (13)

with PL being the usual helicity projection operator. We recall that the success of the fermionic KK
decomposition requires, from the intermediate use of integration by-parts, that these wavefunctions satisfy
the coupled BC: fLn f

R
m(πR) − fLn fRm(0) = 0 for all n,m. This type of condition is trivially satisfied in

1As in I, we will write these expressions in the form employing KK level dependent mixing angles: an = cos θnφn −
sin θnV5n, etc, as will be employed below.
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orbifold models but this is not necessarily so in the present case. The orbifold choice is conventionally
employed so as to have a chiral zero-mode which is not something we desire for DM in the present setup
hence necessitating a different choice of BCs. However, just as the requirement of the absence of the
Higgs portal above and in I restricted the bulk scalar wavefunction BCs, we can play a similar game with
the fermion wavefunctions in order to avoid a simple neutrino portal of the form λinLHχ̄

R
n , where Li are

the three SM lepton doublets, by requiring that fRn (0) = 0 so that the χR cannot act as RH-neutrinos.
We note that if the set of λin were to take on a common value then the limit on the invisible width of the
Higgs [21] would require this value to be < 10−5 since many KK modes of χR could contribute to this
final state. If we chose fRn (0) = 0 to avoid this problem, then we must also have either fL,Rn (πR) = 0 to
fully satisfy the above by-parts BC constraint.

To move ahead, consider the coupled set of equations of motion of the fermions:

(±∂y −mD)fL,Rn = −mF
n f

R,L , (14)

where mF
n are the physical masses of the fermion KK states. If we assume a solution of the form

fRn (y) = An cosσy + Bn sinσy, the requirement that fRn (0) = 0 trivially leads to An = 0. Combining
these two equations into a single second-order one also tells us that σ = xFn /R where the values of
xFn will be supplied by solving the appropriate root equation below so that (mF

n )2 = (xFn )2/R2 + m2
D.

Normalization of the fRn wavefunction on the 0 ≤ y ≤ πR interval further informs us that

B2
n =

2

πR

(xFn )2 + δ2

(xFn )2 + δ2 + δ/π
, (15)

where δ = mDR. To avoid orbifold BCs and a massless zero-mode, we now assume fLn (πR) = 0 to satisfy
the integration by-parts condition which then fully determines this set of wavefunctions to be

fLn (y) =

√
2

πR

xFn√
(xFn )2 + δ2 + δ/π

(
cosxFnφ+

δ

xFn
sinxFnφ

)
, (16)

with φ = y/R as above and also leads to the desired root equation

xFn cotπxFn + δ = 0 , (17)

which requires that δ > −1/π in order to avoid there being tachyonic roots and/or ghosts. Typical values
of the smallest root and the corresponding values of the lightest fermion (i.e., DM) mass as a function
of δ over the interesting range are shown in Fig. 3; note that xF1 → 0 as δ → −1/π below which value
the tachyonic root appears. Once purely geometric factors are accounted for as in the scalar case, the
coupling of these left-and right-handed fermion tower fields to the the gauge KK tower are given by

gD · gL,R i
mn = g5D

∫ πR

0

dy fL,Rm (y)fL,Rn (y)vi(y) . (18)

Note that, in all generality, gL i
mn 6= gR i

mn so that the interaction of the DM with the DP tower is potentially
parity-violating. This result is initially puzzling until one recalls that this happens to the lowest fermion
mode all the the time in conventional orbifold models since there either fL0 or fR0 is absent by construction
in order to obtain a massless mode and which is seen to be maximally parity/charge conjugation violating.
Of course in such models the higher fermion modes will have a vector-like coupling but that will not be
the case here although definite patterns in the KK tower couplings do appear; some details of these
couplings will be discussed below. We remind that here the state χ = χ1 is to be identified with the DM2

Summarizing, apart from the overall mass scale set by R−1, Model 3 is described by 4 parameters:
δA, a, δ and h which determine all the masses and couplings amongst the various KK states. While the
gauge KK mass spectrum is controlled by δA, a alone, their couplings to DM also depend upon δ. h will
play no role in what follows. We note that as a becomes larger the lower end of the gauge KK spectrum

2Note that, as usual, heavier dark sector fermion fields can be added if needed to cancel any induced gauge anomalies.

8



Figure 3: The value of the smallest real root (red) and corresponding dimensionless DM mass as functions
of δ.

will become more compressed as the dominant parts of the masses are arising from the Higgs vev and
not the size of the interval. Thus for a given value of δA, values of a not too far from amax will likely
be the most interesting for us. Similarly, positive values of δ, yielding larger masses for the DM relative
to the gauge KK states will likely prove the most interesting. We now perform a scan over these three
parameters assuming the following ranges: 0.1 ≤ δA ≤ 3, 0 ≤ a ≤ amax(δA), and −1/π ≤ δ ≤ 1.5 while
simultaneously imposing the requirements that (i) the DM mass is below that of the lightest gauge KK
state, (ii) the product of the SM and DM couplings to the lightest two gauge KK states have the same sign
and with the ratio of the DM vector coupling of the second gauge KK state to that of the lowest state >∼ 0.5
to maximize destructive interference, (iii) 0.5mV

2 ≤ 2mDM ≤ 0.98mV
2 while also 2mDM ≥ 1.4mV

1 . These
requirements will push the mass spectra and couplings towards the parameter space regions where the
likelihood of the KK-mechanism being active are the most the probable. Since this is a zero-temperature
calculation we next examine the surviving points to see whether or not they produce suppressed values of
the annihilation cross section indicative of the strong destructive interference we are seeking. Assuming
this set of points is non-empty, we then extract a set of benchmarks (BMs) that will suggestively show
the type and scale of the possible variations within this allowed space and calculate the ratio, K, of their
finite temperature (xF = mDM/T = 20 is assumed here) thermally averaged annihilation cross sections
at FO to their corresponding values of the zero-temperature (T = 0) annihilation cross section. Recall
that we will require that K >∼ 104 for this result to be interesting.

The cross section for χχ̄ → e+e− (e+e− being a stand-in here for all of the light, kinematically
accessible SM states) in the me → 0 limit is given by

σ =
αg2Dε

2
1

3βχs

∑
ij

Pij
εiεj
ε21

[
vivj

3− β2
χ

2
+ aiajβ

2
χ

]
(19)

where the sum extends over intermediate vector KK tower fields, Vi, εi/ε1 = NV
i /N

V
1 , which for our BMs

that we will discuss is shown in Fig. 4, β2
χ = 1 − 4m2

χ/s, (vi, ai) = 1
2 (gL i

11 ± gR i
11 ) (with these coupling

factors not to be confused with the gauge KK wavefunctions) and

Pij = s2
(s−m2

Vi
)(s−m2

Vj
) + ΓiΓjmVimVj

[(s−m2
Vi

)2 + (ΓimVi)
2][i → j]

(20)
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BM δA a δ N mV1
mV2

mDM Sum K/104 rmin
1 1 2.42 0.235 0.342 0.784 1.495 0.659 1.125 6.38 0.604
1’ 1 2.27 0.235 1.003 0.767 1.480 0.659 1.080 1.37 0.598
2 0.5 3.82 0.355 0.464 1.007 1.666 0.747 1.147 4.36 0.800
3 1.5 1.61 0.180 1.518 0.642 1.380 0.620 1.027 3.20 0.402
4 0.4 4.65 0.395 3.650 1.108 1.741 0.777 1.196 1.39 0.842

Table 1: Parameters and general properties of the five chosen Dirac DM BM models; all masses are given
in units of R−1.

with Γi being the total width of the KK state Vi. All of these quantities will be calculable within our
set of chosen BMs below. For concreteness, the T = 0 cross section, for which s = 4m2

DM , is given
numerically by

< σvrel >T=0= 2.8 · 10−30cm3s−1 N
(gDε1/10−5)2

(mV1/100 MeV)2
(21)

where N is a roughly O(1) number depending upon the specifics of the BM point. Here we see that is
easy enough to satisfy both the CMB and 21 cm constraints by, e.g., choosing small values of the product
gDε1; the real issue is whether or not we can obtain parameter points where K is also simultaneously
sufficiently large so as to obtain the observed relic density.

Fortunately, for 0.4 <∼ δA <∼ 1.5, we do find parameter space points satisfying all of our requirements
and generally with values a not too far below amax as expected. For example, when δA = 1(1/2, 3/2)
the range of a values which produce potentially ‘interesting’ model points is roughly 2.27(3.82, 1.61) <∼
a <∼ 2.54(4.25, 1.69) with some values clearly preferred over others. These ranges are found to produce
relatively deep destructive minima in the T = 0 cross section which are also not far below the position of
the second resonant peak. To get a feeling for this parameter space, we choose the five representative BM
points with a spread of parameter values and whose detailed properties are shown in Table 1. Amongst
other things, we note that all of these BM points lead to values N above which are not far from unity
as expected and produce values of K in excess of 104 as required. Now let us investigate these points a
bit more closely. To do this we perform the following exercise: recalling that all of the DM couplings to
the KK tower gauge fields are dependent of the DM mass itself we freeze these couplings to their specific
BM values and explore how the kinematics of the various observables of interest depend upon the ratio
r = 2mDM/mV1

; all other parameters in each BM are held fixed while this analysis is performed. The
top panel in Fig. 5 shows, apart from a common overall factor, the T = 0 DM annihilation cross section
as a function of r for our five BMs. This is the more realistic version of the simple toy model result shown
in the top panel of Fig. 1 All BMs show a common first resonance peak due to V1 but their detailed
behaviors differ for larger r values due to their different mass spectra (e.g., the mass of V2 which we
see as the second resonance peek) and multiple coupling variations. However, all these BMs have strong
destructive minima in the required range r < 2, specifically, 1.41 <∼ r <∼ 1.94 with the corresponding V2
peak lying not far above this minima with a typical separation ∆r ' 0.2 in all cases. This is far below
the value of ∆r = 1 seen in the simple toy model above. This small separation is a key ingredient for the
success of these models since the greater temperatures at FO are limited as to how much higher they can
push the DM collision center of mass energy.

The lower panel in Fig 5 shows the ratio of DM annihilation cross sections at FO to those at T =
0, K, as a function of r, performing the same type of analysis as in the top panel, i.e., freezing all
other parameters and simply varying r. Here we see several things: (i) below the V1 peak we see the
conventionally expected resonant enhancement of K ∼ 80 which, as discussed above is insufficient for our
present goals. (ii) For larger r we see the KK-enhancement peaks associated with the deep troughs in
the top panel. In all cases, the actual K value at the peak is somewhat larger than in our chosen BMs
indicating that the parameters for these representative points are not completely optimal in maximizing
the value of K. However, in all cases we see that values of K ∼ 104 are relatively easy to obtain employing
this mechanism. To understand the importance of the relative signs of the couplings of V1,2 to the DM,
we show in Fig. 6 the same results for K as in Fig. 5 for BM1 and BM4 but now comparing to to the same
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Figure 4: Values of εn/ε1 appearing in the cross sections as a function of the KK level n for BM1/BM1’
(magenta), BM2 (blue), BM3 (red) and BM4 (cyan).

BMs after flipping the signs of the V2 couplings. We first see that the normal resonance enhancement
below V1 is insensitive to this coupling choice as it should be. However, when this coupling sign is flipped,
we see that the very large K values for our BMs ∼ 104−5 are reduced to values of K ∼ 30−40 that might
be obtained by ordinary resonance enhancement thus demonstrating the need for both V1,2 to have the
same sign couplings to obtain large K values.

Along these same lines we can immediately evaluate the χ(χ̄) − e elastic scattering cross section for
our BMs, which is given generally (but in the limit of vanishing DM velocities) by

σe =
4αµ2g2Dε

2
1

m4
V1

[∑
i

εi
ε1

vi
m2
V1

m2
Vi

]2
(22)

where µ = memχ/(me +mχ) is the reduced mass ∼ me for the DM masses of interest to us. Note that
apart from a common overall factor, all of the BM dependence lies in the squared sum within the bracket
so that, numerically, we have

σe = 3.0 · 10−42cm2
(100 MeV

mV1

)4 (gDε1
10−5

)2
× Sum (23)

where ‘Sum’ denotes the squared summation above and whose values (also found to be close to unity due
to the rapid convergence of the series) for the BM points are given in Table 1. We note here that the
typical values we obtain for this cross section are a factor of order ∼ 20-50 below the projected sensitivity
of the first full incarnation of, e.g., SENSEI [22–24], but may eventually be reached by experiment.

Turning to the mass spectra themselves, the requirements to obtain large K values pushes us into a
relatively constrained location in parameter space which essentially determines the decay properties of
the lowest lying members of the DP KK tower. Since the DM must be relatively heavy in comparison
to V1, V1 must necessarily (unlike in Models 1 and 2) decay to SM particles, e.g., e+e− in the the mass
range of interest to us. The next heavier gauge KK state, V2, is necessarily more massive than 2mDM

and since, g2D >> (eε2)2, essentially only decays to DM pairs. Thus V1 is like the DP being searched
for at HPS [26] while V2 is more like the state decaying to missing momentum/energy which would be

11



Figure 5: (Top) Scaled T = 0 DM annihilation cross section as a function of r = 2mDM/mV1
for the

benchmark models BM1 (green), BM1’ (magenta), BM2 (blue), BM3 (red) and BM4 (cyan). (Bottom)
Ratio of the freeze-out to T = 0 DM annihilation cross sections, K, as a function of r for the same BMs as
in the top panel. The horizontal dashed (dash-dotted) lines are guides to the eye for K = 2 · 104(2 · 103).
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Figure 6: Same as in the lower panel of the previous Figure for BM1 (green) and BM4 (red) but also
for these same BM (in cyan and blue, respectively) where we artificially flip the signs of the product of
couplings of the SM and DM to V2 for comparison. The horizontal dash-dotted) line is a guide to the eye
for K = 2 · 103.

sought by LDMX [27]. As we’ll discuss, the heavier gauge KK states will likely have more complex decay
patterns.

What are the other properties of these BMs? Given the values in Table 1 the only parameter remaining
unspecified (and which played no role in the above discussion) is h or perhaps more usefully the ratio
rha = h/a which determines the relative hn and an spectra. An important aspect of the scalar sector, as
noted above, is that h, a do not interact directly with the χ′s without mediation by the vectors, V . Of
course there is some significant flexibility here as the h, a are essentially decoupled from the considerations
above but we will employ the spectrum assumptions made earlier for purposes of demonstration; other
mass spectra will lead the qualitatively similar results. One of the first issues we need to address is the
manner in which h, a might decay; the possibilities are clear once we recall that the relevant interaction is
of the off-diagonal form haV with possibly the most interesting situation involving the lightest KK mode
in each tower. Since a1 is assumed to be the most massive of the lowest KK levels by construction, it
decays as a1 → hV ∗n , V

∗
n → e+e− and, since by assumption mh1

> mV1
, then h1 → V1V

∗
n . Note that this

mass ordering requires a different minimum value of rha, i.e., rmin, for each BM point; these are given in
Table 1. This general type of hiVjVk off-diagonal coupling is generated through the dark Higgs vev since
only part of the masses of the gauge fields arise from this source and the mass and coupling matrices are
thus not simultaneously diagonalizable. The decays of h1, a1 thus lead can to rather complex final states
with up to three pairs of e+e−, at least one of which is on-shell (by construction) arising in the case of
h1 decay. Since the a1 − h1 splitting can be accidentally small it is possible that the a1 is long-lived in a
situation parallel to that seen in I. As the KK towers are ascended rather complex decay patterns can be
encountered; level-by-level as n increases so does the mass degeneracies between the χn, an and hn states
while the Vn generally remain somewhat lighter due to the BLKT. This large-n behavior is found to be
independent of the details of scalar sector unless it too has a BLKT.

A sample spectrum for BM1 is shown in the upper panel of Fig. 7 assuming rha = h/a = 0.8 > rmin
for purposes of demonstration; the states are the least degenerate in the case of the lowest tower states.
These mass spectra can then be used to determine which decay modes are open for the various KK tower
states. For example, for this BM, we see that the following on-shell decays are kinematically accessible:
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Figure 7: (Top) Mass spectrum of BM1 for rha = h/a = 0.8 as a function of the level n in units of R−1

for Vn (red), χn (blue), an (green) and hn (magenta), respectively. (Bottom) Growth in the mass ratio
mVn

/mV1
as a function of n for BM1 (green), BM1’ (magenta), BM2 (blue), BM3 (red) and BM4 (cyan).
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V3 → h1a1, χ1χ̄1, χ1χ̄2+h.c., a3 → V1h1, V1, h2, V2h1 and h3 → V1a1, V1, a2, V2, a1 while χ2 → χ1V1 and
a2 → V1h1 are the only ones allowed. In this BM case, h2 still only decays off-shell, here to V1V

∗
n and

is likely long-lived. For the other BMs the set of allowed decays can be somewhat different particularly
due to the gauge KK mass spectrum differences which are quite sensitive to choices of δA, a. In the lower
panel of Fig 7 we can see how the spacing between the different gauge KK levels, mVn

/mV1
, grows with

n for the different BMs. This shows a variation of almost a factor of ∼ 80% implying that the details of
the mass spectra for the different parameter space points can vary significantly. More generally, we also
find the following coupling patterns for the DM tower fields for all the BMs: the DM couplings to the
KK gauge tower alternate in sign after the first two gauge levels. More massive fermion KK excitations
generally have parity-violating couplings to the DP. However, eventually they begin to alternate between
almost pure vector (axial-vector) all with the same sign, opposite to that for the DM, for odd (even) KK
levels making the KK tower couplings, asymptotically, parity-conserving.

3 Model 4: Majorana Fermion Dark Matter

The Majorana scenario can be obtained by a direct augmentation to the discussion of Dirac fermions
presented in the last Section. To some extent the Majorana fermion case is simpler than the Dirac case
since the DM annihilation process is now automatically p-wave if axial-vector couplings to the DP KK
states exist or involves co-annihilation with its heavier Majorana partner that arises from the splitting of
an originally Dirac fermion into two Majorana components. This means that we are no longer constrained
to live near the DM annihilation cross section minima when T = 0 as in the Dirac case above thus leaving
much greater parameter freedom in the gauge sector. However, it is also simultaneously more complex
than the Dirac case since there are now 5 distinct KK towers of fields to deal with although h, a will still
play almost no role here. We arrive at this scenario by returning to Model 3 above and choosing the bulk
scalar to have |QD| = 2 so that it can generate a Majorana mass when S gets a vev, i.e., mM = yDvs/

√
2,

via the new piece in the action:

SMaj =

∫
d4x

∫ πR

0

dy
[
− yDX̄XcS + h.c.

]
(24)

where yD is a dark Yukawa coupling, a new free parameter which we can trade for the Majorana mass
itself mM = δM/R. This new mass term then alters the fermion KK equations of motion above to [28]

(±∂y −mD)fL,Rn = −(mF
n −mM )fR,L , (25)

whose solutions are essentially identical in form to those obtained in the Dirac case above especially as
we impose the same BCs on the solutions: fRn (0) = 0 and fLn (πR) = 0 although the mass eigenstate
structure is different. Here each Dirac mass state in the KK tower is split in two with the values
m1,2nR = [(xFn )2 + δ2]1/2 ± δM > 0 where xFn and δ have been defined above. Here, a certain parameter
hierarchy and Majorana mass sign convention has been assumed, δM ≥ 0, so that physical Majorana
tower masses m1,2n are also positive. So, e.g., taking δ = δM = 0.1 we find the lowest Dirac KK mass
to be ' 0.565/R from Fig. 3 and hence the lowest KK values for the split Majorana sates to be m1,2 are
' 0.465/R and 0.665/R, respectively. Note that this is a sizable mass splitting between these two states,
i.e., (m2 −m1)/m1 ' 0.43 and a parameter tuning would be necessary to obtain smaller values of order
only a few per cent. Given the equations of motion above, the fL,Rn (y) reduce to the same functions
as before when written in terms of xFn and δ and so the couplings gL,R i

mn above are also completely
determined once the gauge KK wavefunctions are known. However, the Majorana mass eigenstates are
now just the linear combinations χ1n = (χLn + χRn )/

√
2 and χ2n = i(χRn − χLn)

√
2, respectively3.

Suppressing Lorentz and KK indices for the moment and recalling that generally gL 6= gR in the
present setup, the interaction of the χ’s with V can be symbolically written as gD[(gLχ̄χL+L→ R)−c.c.]V

3It is sometimes convenient to write these in the familiar χ, χc basis [25]; then χn = (χ1n + iχ2n)/
√

2i and χc
n =

−(χ1n − iχ2n)
√

2i as we will generally do here.
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so that in terms of the mass eigenstates χ1,2 this becomes (still suppressing KK indices)

gD

[
(gR − gL)

2

(
χ̄1γµγ5χ1 + χ̄2γµγ5χ2

)
+
i(gR + gL)

2

(
χ̄1γµχ2 − χ̄2γµχ1

)]
V µ , (26)

which we see differs from the 4-D case, where gR = gL occurs naturally, since both ‘diagonal’ and ‘off-
diagonal’ gauge couplings are generally obtained. In the 4-D case only the second term exists due to
the purely vectorial coupling present there so that the DM reaches FO only via co-annihilating with its
somewhat heavier partner. Here, we might expect this reaction to be rather suppressed in the present
case due to the typically rather large mass splitting between these two states as noted above. However,
a new direct process can now exist but it is p-wave (hence v2) suppressed due to the axial-vector nature
of the relevant coupling; of course this is exactly what we want in order to satisfy the CMB and 21 cm
constraints. The annihilation cross section into e+e− in the present model is thus in the same form as
Eq.(19) above but with the vi → 0 and an additional overall factor of 2 due to the Majorana nature
of the DM, i.e., a2i → 1

2 (2ai)
2. This pair of interactions also has an immediate implications for direct

detection searches for DM: in 4-D at tree-level only the inelastic process, e.g., χ1e → χ2e is available
and the two masses must be highly degenerate to obtain the observed relic density thus implying that
there’s a chance that this process might occur. The elastic scattering process χ1e→ χ1e also does occur
but only at 1-loop in the limit of v2DM → 0. In 5-D the inelastic scattering process is unlikely to be of
much relevance due to the generally large mass splittings that are expected while the new axial-vector
coupling of the DM to the DP gauge tower allows for elastic scattering. However, this is found to be v2

suppressed making it likely unobservable today. Note that the calculation of the couplings gL,R i
mn follows

the same path as in the case of Dirac fermions and remains only dependent upon the three parameters
δA, a and δ and are independent of the Majorana mass parameter δM which only influences the Majorana
mass spectrum itself.

Unlike in the Dirac case, the presence of the Majorana mass term generates an interaction between the
χ1,2 KK states and those arising from the decomposition of the scalar S, i.e., h, φ with φ then generally
mixing as above with V 5 to form the physical state a and the Goldstone bosons (which we ignore). Thus
SMaj written in the h, φ basis (but with KK indices suppressed) is just

SMaj =

∫
d4x

∫ πR

0

dy − mM

vs

[(
χ̄2χ2 − χ̄1χ1

)
(vs + h) + i

(
χ̄2γ5χ2 − χ̄1γ5χ1

)
φ

]
. (27)

In 4-D, an interaction of this type would possibly allow for DM annihilation to SM fields via h mixing
with the SM H but this is absent here due to the BCs assumed above4. Of course, for other choices of
the scalar BCs we would need to tune λHS to tiny values which we could always do as in 4-D. Here,
above the lowest KK modes, SMaj can provide new decay paths for heavier states as we will return to
shortly. Also, in 4-D, the field φ is absent from the physical spectrum as it alone plays the role of the
Goldstone boson since V 5 is absent there while here the general combination, a, survives as a physical
field. However, outside of the presence of the vev, as we have seen, the h, a fields play no important
role as far as the dynamics of DM is concerned as they either do not couple to the SM or they have
couplings which are very highly suppressed. For the lightest KK levels if we imagine that, as above,
mV1 < mh1 ,ma1 , then h1, a1 can decay as in the previous Section and this can always be arranged by
judicious parameter choices. We still must require that mχ1,1

< mV1
< 2mχ1,1

to prevent the s-wave DM
annihilation into V1 pairs and so that the lightest gauge mode decays to the SM, i.e., V1 → e+e−. On the
other hand, V2 will have a large (possibly dominant) branching fraction into DM pairs, similar to what
we saw above in the Dirac case with the obvious implications for the experiments hoping to produce DP
directly. However, the V2 decay to DM plus its heavier Majorana partner is also possible, depending upon
the exact details of the spectra, but this is seen to occur for our chosen BM points. In such a case V2
decay will yield an e+e− pair as well as missing energy, something quite different than in the 4-D models.
Note that there remains some freedom in the relative position of χ2,1 in the mass spectrum. However,
its only allowed decay path (since the scalar couplings are ‘diagonal’) is via χ2,1 → χ1,1V1 where it is

4As noted in the previous Section, the KK modes of V 5 do not couple to the SM brane-localized fields.
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BM δA a h δ δM mV1
mχ1,1

mχ2,1
mh1

ma1 mV2

1 1 1 0.9 0.1 0.1 0.607 0.465 0.665 0.673 0.707 1.389
2 0.5 0.5 0.4 0.2 0.15 0.567 0.484 0.784 0.602 0.612 1.432

Table 2: Parameters of the two Majorana DM BM models; all masses are given in units of R−1.

likely that the V1 is off-shell (unless δM is of sufficient magnitude) so that several of these lowest mass
KK states can be long-lived. Fig. 3 and Fig. 6 can be consulted to address this issue as the rather strong
requirement for an on-shell V1 decay is that 2δM > mV1

R. Clearly as δ increases the value of δM will
also need to increase to insure that the DM mass lies below that of V1.

Let us consider the following two sample BM points shown in Table 2 which are (essentially) random
places in this rather large parameter space. In units of R−1 the masses of the lowest KK excitations in
these particular cases are also supplied in the Table. Note that there is nothing particularly special about
these points other than they satisfy the rather loose constraints discussed above; a detailed examination
of the full five-dimensional parameter space would undoubtably be a useful exercise. The fractional mass
splitting between the two lightest Majorana states is seen to be sufficiently large so as to make the co-
annihilation mechanism inefficient. One observes that 2mDM lies safely away from both mV1,2

, essentially
at the beginning of the relatively flat cross section region between these two resonances similar to the
blue curve shown in the upper panel of Fig. 1. Thus, if we ignore any co-annihilation contributions due
to the large Majorana mass splitting (as well as any potentially very highly suppressed h exchanges), we
may safely use the familiar expansion < σvrel >= bv2rel as well as the machinery for the calculation of the
annihilation cross section in the previous Section as the DM annihilation process is dominantly s-channel
via Vn exchange. This then yields the estimates (again assuming that x = mDM/T = 20)

< σvrel >= 1.2(0.74) · 10−25cm3s−1
(gDε1)2/10−7

(mV1/100 MeV)2
(28)

for BM1(BM2) which are not parametrically far from the value needed to obtain the observed DM relic
density. Other possible BM choices lead to similar results up to O(1) factors due to variations in the
fermion and gauge mass spectra and the corresponding KK effective couplings.

4 Summary and Conclusions

In this paper we have considered an extension of our previous study of the 5-D kinetic mixing/vector
portal model to the case where the DM is fermionic. In these setups the SM singlet bulk Higgs sector
plays very little role beyond its having a vev. Unlike in the previously examined scenario of complex
scalar DM, the annihilation process for Dirac fermions via a spin-1 mediator is necessarily s-wave and so
is not considered in 4-D models of this type. However, in 5-D, we have examined a new mechanism which
allows for this possibility which is the KK generalization of the usual resonance enhancement picture.
In that setup, the mass difference Mres − 2mDM is sufficiently small so that the thermal motion of the
DM near freeze-out is great enough as to push

√
s ∼Mres which greatly increases the annihilation cross

section at freeze-out. Thus the annihilation cross section can then be smaller by a factor of K ∼ 100
when T ∼ 0. This enhancement is insufficient in the case of the Dirac DM in the mass range of interest
to us as the ratio of the required thermal cross section and the constraints from the CMB and 21 cm
data is required to be of order K ∼ 104. To attain such a large ratio we need not only a significant
enhancement on resonance but also a strong destructive interference below, but not too far away from,
the resonance where the T ∼ 0 DM annihilation takes place. The effectiveness of this arrangement places
quite stringent requirements on the DM mass and the DP KK tower spectra as well as the SM/DM-DP
couplings which must be of the same sign and of similar magnitude for the first two gauge KK levels.
Fortunately, in the setup we consider, these quantities were found to be controlled by only 3 parameters.
A scan of this parameter space was performed and successful regions satisfying our requirements were
identified resulting in the 5 sample benchmark models that we then examined in greater detail. These
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BMs were found to yield K values in the range 1.4 ≤ K/104 ≤ 6.4 and it was further shown that even
larger values could be obtained with some further tuning of the parameters. All of these points led to
very similar predictions for the DM-electron scattering cross section. In such a setup, DP production
signals in both the e+e− and missing energy/momentum channels should be expected from the decays
of the lightest two gauge KK states while more exotic decay signatures were possible from the other KK
states.

When the DM is a Majorana field in 4-D, the DM achieves the required relic density via the co-
annihilation with its somewhat more massive Majorana partner; this splitting is achieved via a coupling
to a SM singlet scalar whose dark charge is chosen so that it can generate a Majorana mass term, a Dirac
mass term for the DM already being present. Since these masses are not necessarily related this mass
splitting can be made small enough so that co-annihilation is effective. In 5-D, the Dirac and Majorana
masses of the DM state are naturally similar so that a much larger mass splitting is induced negating
the efficiency of the co-annihilation process. Fortunately, unlike in 4-D, in 5-D the original Dirac fermion
easily obtains parity-violating couplings to the DP KK tower states which are inherited by the physical
Majorana fields. This leads to a new coupling of the DM to the DP which is diagonal as well as axial-
vector in nature thus leading to a DM p-wave annihilation process which is needed to avoid the CMB
and 21 cm constraints yet can lead to the observed relic density. Unfortunately, this coupling leads to
scattering off of electrons which is velocity suppressed. DP direct production signals in this case can be
more complex than in the Dirac scenario, even for just the first two DP KK states.

The extension of the 4-D KM/vector portal to 5-D opens several new windows of opportunity for
model building and needs to be examined in more detail that the preliminary studies we have made here.
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