Updates on the Studies of N* Spectrum and Structure with the CLAS Detector

V.I. Mokeev, Jefferson Lab

Hall-B Staff Meeting, September 21, 2015

The experimental program on the studies of N* spectrum/structure in exclusive meson photo-/electroproduction with CLAS seeks to determine:

- $\gamma_v NN^*$ electrocouplings at photon virtualities up to 5.0 GeV² for most of the excited proton states through analyzing major meson electroproduction channels
- extend knowledge on N*-spectrum and on resonance hadronic decays from the data for photo- and electroproduction reactions with multiple mesons in the final state.
- A unique source of information on different manifestations of the non-perturbative strong interaction in generating different excited nucleon states as relativistic bound systems of quarks and gluons.

Review papers:

- 1. I.G. Aznauryan and V.D.Burkert, Progr. Part. Nucl. Phys. 67, 1 (2012).
- 2. I.G. Aznauryan et al., Int. J. Mod. Phys. E22, 133015 (2013).
- 3. I.C. Cloët and C.D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014).

Excited Nucleon States and Insight to Non-Perturbative Strong Interaction

Studies of N^{*} spectrum/structure suggest that ground and excited nucleon states consist of three dressed (constituent) quarks (C.Q.) coupled by non-perturbative strong interaction (ovals in the plot).

Emergence of dressed guarks and gluons

In the regime of large α_s that is relevant for N^{*} formation, dressed quarks and gluons are substantially different with respect to the bare quarks and gauge gluons. They acquire dynamical structure and momentum-dependent mass.

Dressed Quark Evolution from pQCD to Confinement Regimes

Consistent results from two different based on QCD approaches:

LQCD - P.O.Bowman, et al., PRD 71, 054505 (2005) (points with error bars).
DSEQCD - C.D.Roberts, Prog. Part. Nucl. Phys. 61, 50 (2008) (lines).

• more than 98% of dressed quark (N/N*) masses as well as their dynamical structure are generated non-perturbatively through dynamical chiral symmetry breaking (DCSB). The Higgs mechanism accounts for less than 2% of the nucleon & N* mass.

•the momentum dependence of the dressed quark mass reflects the transition from quark/gluon confinement to asymptotic freedom.

Mapping-out Quark Mass Function

I.C.Cloët, C.D.Roberts, A.W.Thomas, Phys. Rev. Lett. 111, 101803 (2013).

- elastic form factors are sensitive to momentum dependence of quark mass function.
- mass function should be the same for dressed quarks in the ground and excited nucleon states.
- consistent results on dressed quark mass function determined from the data on elastic form factors and transition $\gamma_v NN^*$ electrocouplings are critical for reliable extraction of this quantity.
- results on transition γ_v NN* electrocouplings offer an access to dynamics of quark-gluon vertex dressing beyond simplified rainbow-ladder truncation.

Studies of $\gamma_v NN^*$ electrocouplings (transition $N \rightarrow N^*$ form factors) represents the central direction in the exploration of strong interaction in non-perturbative regime.

Extraction of $\gamma_v NN^*$ Electrocouplings from the Exclusive Meson Electroproduction off Nucleons

• Consistent results on $\gamma_v NN^*$ electrocouplings from different meson electroproduction channels and different analysis approaches demonstrate reliable extraction of these quantities.

(efferson Pab

Summary of the CLAS Data on Exclusive Meson Electroproduction off Protons in N* Excitation Region

Hadronic final state	Covered	Covered Q ² -	Measured	•dσ/dΩ–CM angular
	W-range, GeV	range, GeV ²	observables	distributions
π+ n	1.1-1.38	0.16-0.36	dσ/dΩ	•A _b ,A _t ,A _{bt} -longitudinal
	1.1-1.55	0.3-0.6	dσ/dΩ	beam, target, and
	1.1-1.7	1.7-4.5	dσ/dΩ, A _b	beam-target asym-
	1.6-2.0	1.8-4.5	dσ/dΩ	metries
π ⁰p	1.1-1.38	0.16-0.36	dσ/dΩ	 •P⁰ P' –recoil and
	1.1-1.68	0.4-1.8	dσ/dΩ, A _b ,A _t ,A _{bt}	transferred polarization
	1.1-1.39	3.0-6.0	dσ/dΩ	of strange baryon
ηρ	1.5-2.3	0.2-3.1	dσ/dΩ	
Κ+Λ	thresh-2.6	1.40-3.90 0.70-5.40	dσ/dΩ Pº, P'	Almost full coverage of the final hadron
Κ +Σ ⁰	thresh-2.6	1.40-3.90	dσ/dΩ	πN , $\pi^+\pi^-$ p , η p , and KY
	thresh-2.6	0.70-5.40	P'	electroproduction.
π+ π ⁻ p	1.3-1.6 1.4-2.1	0.2-0.6 0.5-1.5	Nine 1-fold differential cross sections	

The data on exclusive electroproduction for all listed final states are available from CLAS and stored in the CLAS Physics Data Base http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi.

Approaches for Extraction of γ_v NN* Electrocouplings from the CLAS Exclusive Meson Electroproduction Data

- Analyses of different pion electroproduction channels independently:
- > π^+ n and π^0 p channels:

Unitary Isobar Model (UIM) and Fixed-t Dispersion Relations (DR)

I.G.Aznauryan, Phys. Rev. C67, 015209 (2003).

I.G.Aznauryan et al., CLAS Coll., Phys Rev. C80, 055203 (2009).

I.G.Aznauryan et al., CLAS Coll., Phys. Rev. C91, 045203 (2015).

> ηp channel:

Extension of UIM and DR

I.G.Aznauryan, Phys. Rev. C68, 065204 (2003).

Data fit at W<1.6 GeV, assuming $S_{11}(1535)$ dominance

H.Denizli et al., CLAS Coll., Phys. Rev. C76, 015204 (2007).

• $\pi^+\pi^-p$ channel:

Data driven JLAB-MSU meson-baryon model (JM)

V.I.Mokeev, V.D.Burkert et al., Phys. Rev. C80, 045212 (2009).

V.I.Mokeevet al., CLAS Coll., Phys. Rev. C86, 035203 (2012).

Global coupled-channel analyses of the CLAS/world data of πN , $\gamma_{r,v}N \rightarrow \pi N$, ηN , $\pi \pi N$, $K\Lambda$, $K\Sigma$ exclusive channels:

T.-S. H. Lee, AIP Conf. Proc. 1560, 413 (2013).

H. Kamano et al., Phys. Rev. C88, 035209 (2013).

Fits to Differential Cross Sections

$\gamma_v NN^*$ Electrocouplings from $N\pi$ and $\pi^+\pi^-p$ Electroproduction

K⁺Λ Structure Functions

$K^+\Sigma^0$ Structure Functions

Access to the Dressed Quark Mass Function from the Data on the Transition $N \rightarrow N^*$ Form Factors

- Good data description at Q²>2.0 GeV² achieved with <u>the same dressed quark mass function</u> for the ground and excited nucleon states of distinctively different structure provides the strong evidence for:
- the relevance of dressed quark predicted by DSEQCD

Jefferson Pab

 promising prospect to map out dressed quark mass function from combined analyses of the data on nucleon elastic and transition form factors with available and future CLAS12 data at Q² < 12 GeV²

Quark Core and Meson-Baryon Cloud in the Structure of N(1440)1/2⁺ Resonance

Quark core from DSEQCD

The mechanisms of meson-baryon dressing :

lerson

Description of the $N(1440)1/2 + A_{1/2}$ electrocoupling by the light front quark models that incorporate the inner core and outer meson-baryon (MB) cloud:

 N_{σ} loops for MB cloud; frozen constituent quark mass. I.T. Obukhovsky, et al., Phys. Rev. D89, 014032 (2014).

MB cloud inferred from the CLAS data as the difference between the data fit and evaluated within DSEQCD quark core

Successful description of the N(1440)1/2⁺ quark core from the QCD Lagrangian has been achieved for the first time with the framework of DSEQCD!

The structure of N(1440)1/2⁺ resonance is determined by complex interplay between inner core of three dressed quarks in the first radial excitation and external meson-baryon cloud.

 $N\pi$ loops MB cloud; running quark mass. I.G.Aznauryan, V.D.Burkert, Phys. Rev. C85, 055202 (2012).

Interplay Between Quark Core and Meson-Baryon Cloud in the Structure of Different Excited Nucleon States

Almost direct access to:

efferson Vab

- quark core from the data on N(1520)3/2⁻: prospect to explore dressed quark mass function and qqG vertex;
- meson-baryon cloud from the data on N(1675)5/2⁻: shed light on the transition from confined quarks in inner core to colorless mesons and baryons in N* exterior

First Interpretation of the Structure at W~1.7 GeV in $\pi^+\pi^-p$ Electroproduction

.....

The JM03 analysis of <u>three of nine</u> onefold differential cross sections

(M.Ripani et al., Phys. Rev. Lett. 91, 022002 (2003)).

<u>Two equally successful ways for the data description:</u> different than in PDG 02' N(1720)3/2⁺ N $\pi\pi$ hadronic decay widths:

	$\Gamma_{tot,}MeV$	BF(π∆) %	BF(ρp) %
N(1720)3/2 ⁺ decays fit to the CLAS Nππ data	114±19	63±12 75±12 (BnGa12)	19±9
N(1720)3/2+ PDG 02'	150-300	<20	70-85

new 3/2⁺(1720) state and consistent with PDG 02' $N\pi\pi$ hadronic decays of N(1720)3/2⁺:

	$\Gamma_{tot,}MeV$	BF(π∆) %	BF(ρ p) %
3/2⁺(1720) candidate	88±17	41±13	17±10.
N1720)3/2+ conventional	161±31	<20	60-100
——— — Jeffe	rson Jab —	V.I.Mokeev, FB2 ²	I International Co

conventional states only, consistent with PDG 02.

implementing 3/2⁺(1720) candidate or conventional states only with different than in PDG 02 N(1720)3/2⁺ $N\pi\pi$ decays.

Resonance Photocouplings from the Preliminary $\pi^+\pi^-p$ **Photoproduction Cross Sections**

Resonance	A _{1/2} , GeV ^{-1/2} *1000, JM15/RPP12	A _{3/2} , GeV ^{-1/2} *1000 JM15/RPP12
N(1650)1/2 ⁻	63±6 53±16	
N(1680)5/2+	-29±3 -15±6	133±14 133±12
N(1700)3/2 ⁻	-5±4 -18±13	30±22 -2±24
N'(1720)3/2+	40±3 N/A	-43±8 N/A
N(1720)3/2+	89±16 97±3 (*)	-35±13 -39±3(*)
∆ (1600)3/2 ⁺	-26±10 -23±20	-19±9 -9±21
∆ (1620)1/2 ⁻	33±4 27±11	
∆ (1700)3/2 ⁻	97±19 104±15	84±11 85±22
∆ (1905)5/2 ⁺	25±4 26±11	-57±10 -45±20
∆ (1950)7/2 ⁺	-68±16 -76±12	-123±20 -97±10

(*)M. Dugger et al., Phys. Rev. C76, 025211 (2007).

Consistent results on photocouplings of resonances with masses above 1.6 GeV from analyses of $N\pi$ and $\pi^+\pi^-p$ channels demonstrate reliable extraction of these fundamental quantities.

Further Evidence for the Existence of the New State N'(1720)3/2⁺ from Combined $\pi^+\pi^-p$ Analyses in both Photo- and Electroproduction

N(1720)3/2⁺ hadronic decays from the CLAS data fit with conventional resonances only

	BF(πΔ), %	ΒF(ρ p) , %
electroproduction	64-100	<5
photoproduction	14-60	19-69

The contradictory BF values for N(1720)3/2⁺ decays to the $\pi\Delta$ and ρ p final states deduced from photo- and electroproduction data make it impossible to describe the data with conventional states only.

Almost the same quality of the photoproduction data fit at 1.66 GeV <W<1.76 GeV and $Q^2=0$, 0,65, 0.95, 1.30 GeV² was achieved with and without N'(1720)3/2⁺ new states

N* hadronic decays from the data fit that incorporates the new N'(1720)3/2⁺ state

Resonance	BF(π∆), %	BF(ρ p) , %
N'(1720)3/2+ electroproduction photoproduction	47-64 46-62	3-10 4-13
N(1720)3/2+ electroproduction photoproduction	39-55 38-53	23-49 31-46
∆(1700)3/2 ⁻ electroproduction photoproduction	77-95 78-93	3-5 3-6

Successful description of $\pi^+\pi^-p$ photo- and electroproduction data achieved by implementing new N'(1720)3/2⁺ state with Q²-independent hadronic decay widths of all resonances contributing at W~1.7 GeV provides strong evidence for the existence of new N'(1720)3/2⁺ state.

V.I.Mokeev, PWA8 / ATHOS 3 International Workshop Ashburn VA, USA, April 13-17, 2015

The photo-/electrocouplings of N'(1720)3/2+ and conventional N(1720)3/2+ states:

N'(1720)3/2⁺ is the only candidate state for which the results on Q²-evolution of transition electrocouplings have become available offering the insight to the structure of the new baryon state.

CLAS12 N* Program

E12-09-003

Nucleon Resonance Studies with CLAS12 Burkert, Mokeev, Stoler, Joo, Gothe, Cole E12-06-108A

KY Electroproduction with CLAS12

Carman, Mokeev, Gothe

Solution Measure exclusive electroproduction cross sections from an unpolarized proton target with polarized electron beam for N π , N η , N $\pi\pi$, KY:

 $E_b = 11 \text{ GeV}, Q^2 = 3 \rightarrow 12 \text{ GeV}^2, W \rightarrow 3.0 \text{ GeV}, \cos \theta_m^* = [-1:1]$

Key Motivations:

Study spectrum and structure of all prominent N^* states vs. Q^2 up to 12 GeV².

A unique opportunity to explore the nature of confinement that is responsible for >98% of resonance masses and the emergence of N* states from QCD

KY data complement the $N\pi\pi$ data as independent information for high-mass states inaccessible with $N\pi$ final states

Urgent need: Develop reaction models to extract electrocouplings that incorporate the transition from M-B to q-G degrees of freedom

Contact person: Volker D. Burkert

A Letter of Intent to the Jefferson Lab PAC43

Search for Hybrid Baryons with CLAS12 in Hall B

Annalisa D'Angelo,^{1,2} Ilaria Balossino,¹¹ Luca Barion,¹¹ Marco Battaglieri,³ Vincento Bellini,¹² Volker Burkert,⁴ Simon Capstick,⁵ Daniel Carman,⁴ Andrea Celentano,³ G. Ciullo,¹¹ Marco Contalbrigo,¹¹ Volker Credé,⁵ Raffaella De Vita,³ E. Fanchini,³ Gleb Fedotov,⁶ A. Filippi,¹⁰ Evgeny Golovach,⁶ Ralf Gothe,⁷ Boris S. Ishkhanov,^{6,13} Evgeny L. Isupov,⁶ Valeri P. Koubarovski,⁴ Lucilla Lanza,² P. Lenisa,¹¹ Francesco Mammoliti,¹² Victor Mokeev,^{4,6} A. Movsisyan,¹¹ Mikhail Osipenko,³ Luciano Pappalardo,¹¹ Marco Ripani,³ Allesando Rizzo,² Jan Ryckebusch,⁸ Iuliia Skorodumina,^{7,13} Concetta Sutera,¹² Adam Szczepaniak,^{9,4} Mauro Taiuti,³ M. Turisini,¹¹ Maurizio Ungaro,⁴ and Veronique Ziegler⁴ ¹INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy ²Universita' di Roma Tor Vergata, 00133 Rome Italy ³INFN, Sezione di Genova and Dipartimento di Fisica, Universita' di Genova, 16146 Genova, Italy ⁴ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA ⁵Florida State University, Tallahassee, Florida 32306, USA ⁶Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119234 Moscow, Russia ⁷University of South Carolina, Columbia, South Carolina 29208, USA ⁸Gent University, Gent, Netherland ⁹Indiana University, Nuclear Theory Center, Bloomington, Indiana ¹⁰INFN, Sezione di Torino, Torino, Italy ¹¹INFN Ferrara e Universitá di Ferrara, Italy ¹²INFN, Sezione di Catania, Catania, Italy ¹³Physics Department at Lomonosov Moscow State University, Leninskie Gory. Moscow 119991, Russia. (Dated: May 17, 2015)

Recommendation:

ellerson C

The PAC encourages the preparation of a full proposal. However, we emphasize that the 11 GeV running should be put forward as a **Run Group Proposal**, if it is indeed to run in parallel with other approved experiments. Further, the additional beam time at 6.6 and 8.8 GeV must be considered as a **separate proposal** that may include other measurements that could be carried out with the additional beam time.

Conclusions

- High quality meson electroproduction data from CLAS allowed us to determine the electrocouplings of most well-established resonances in mass range up to 1.8 GeV from analyses of π^+n , π^0p , ηp and $\pi^+\pi^-p$ electroproduction channels. Consistent electro-coupling values for the transitions to N(1440)1/2⁺ and N(1520)3/2⁻ states obtained independently from N π /N $\pi\pi$ exclusive channels demonstrated capabilities of the developed reaction models for reliable extraction of N*-parameters.
- To describe both the $\pi^+\pi^-p$ photo- and electroproduction data demands including the new baryon state N'(1720)3/2⁺. Successful description of these data with Q²-independent hadronic decay widths to the $\pi\Delta$ and ρp final states of all contributing resonances provides strong evidence for the existence of N'(1720)3/2⁺ new baryon state.
- Physics analyses of the CLAS results on resonance electrocouplings revealed the structure of N*-states at Q²<5.0 GeV² as complex interplay between meson-baryon and quark degrees of freedom. The studies of N*-states with different quantum numbers are essential in order to disentangle different components in the N* structure.
- Successful description of elastic and transition form factors to different low-lying resonances achieved at Q²>2.5 GeV² within the framework of DSEQCD demonstrated promising opportunity to map out dressed quark mass function from the data on elastic and transition form factors.

Outlook

- After 12 GeV Upgrade CLAS12 will be only available worldwide facility capable to obtained electrocouplings of all prominent N* states at still unexplored ranges of low photon virtualities down to 0.05 GeV² and highest photo virtialities ever achieved for exclusive reactions from 5.0 GeV² to 12 GeV² from the measurements of exclusive N π , π + π -p, and KY electroproduction.
 - The expected results will allow us:
 - a) search for hybrid-baryons;
 - b) explore the emergence of meson-baryon cloud from quark-gluon confinement;
 - c) access quark distribution amplitudes in N* states;
 - d) to map out the dressed quark mass function at the distance scales where the transition from quark-gluon confinement to pQCD regime is expected, <u>addressing</u> <u>the most challenging problems of the Standard Model on the nature of >98% of</u> <u>hadron mass and quark-gluon confinement.</u>
- Success of N* Program with the CLAS12 will be very beneficial for Jefferson Lab and hadron physics community worldwide.

Extension of the CLAS $\pi^+\pi^-p$ Electroproduction Data

1.6

1.7

1.8

1.9

W, GeV

1.5

1.4

$\frac{Fully integrated \pi^{+}\pi^{-}p \, electroproduction cross}{sections \, off \, protons}$

• Nine 1-fold differential cross sections are available In each bin of W and Q² shown in the plots.

• Resonance structures are clearly seen at W ~1.5 GeV and ~1.7 GeV at $0.4 < Q^2 < 5.0 \text{ GeV}^2$ (red lines).

Analysis objectives:

• Extraction of $\gamma_v NN^*$ electrocouplings and $\pi\Delta$, ρp decay widths for most N*s in mass range up to 2.0 GeV and 0.4< Q²< 5.0 GeV² within the framework of JM-model.

• Exploration of the signals from 3/2⁺(1720) candidate-state (M.Ripani et al., Phys. Rev. Lett 91, 022002 (2003)) with a goal to achieve decisive conclusion on the state existence and structure.

• First results on electrocouplings of high-lying $(M_{N^*}>1.6 \text{ GeV})$ orbital nucleon excitations and high-lying parity partners.

015

25

Signals from N* states in the CLAS KY electroproduction data

Charting Meson-Baryon Mechanisms of the JM Model

- $\pi^{-}\Delta^{++}$ meson-baryon channel accounts for the major part of $\pi^{+}\pi^{-}p$ electroproduction cross section. Relative resonant contribution to $\pi^{-}\Delta^{++}$ channel increases with Q².
- 2π direct production decreases substantially at W from 1.5 to 1.7 GeV offering an indication for sizable final hadronic interactions between the $\pi^+\pi^-p$ final state and others open meson-baryon channels.
- $\pi\Delta$, ρ p-amplitudes decomposed over PW's of angular momenta J can be provided from the data fit.
- The request for reaction theory: guidance for the development of analytical continuation of $\pi\Delta$, ρ p-amplitudes allowing us to extract resonance electrocouplings from residues at the resonance pole positions.

Resonant /Non-Resonant Contributions from the Fit of $\pi^+\pi^-p$ Electroproduction Cross Sections within the JM Model

Status and Prospects on Extraction of High-Lying N* Electrocouplings from CLAS Data

Independent fits in different W-intervals:

green: 1.46<W<1.56 GeV magenta: 1.56<W<1.66 GeV red: 1.61<W<1.71 GeV blue: 1.66<W<1.76 GeV black: 1.71<W<1.81 GeV

consistent electrocoupling values offer sound evidence for their reliable extraction.

 $\pi^+\pi^-p$ electroproduction channel provided first preliminary results on $\Delta(1620)1/2^-$, N(1650)1/2⁻, N(1680)5/2⁺, $\Delta(1700)3/2^-$, and N(1720)3/2⁺ electrocouplings with good accuracy.

<u>Prospect:</u> evaluation of high-mass N* electrocouplings from independent analyses of KY channels. Reaction models capable of extracting resonance electrocouplings from the fit of unpolarized cross sections and polarization asymmetries measured in KY electroproduction <u>are needed !</u>

V.I.Mokeev, Hall-B Staff Meeting, September 21 2015

Resonance Transitions with the CLAS12

Resonance electrocouplings in regime of quark core dominance can be related to the running quark masses and their dynamical structure.

Jefferson Jab

12 GeV experiment E12-09-003 will extend access to electrocouplings for all prominent N* states in the range up to $Q^2=12GeV^2$.

P₁₁(1440) A_{1/2}

Probe the transition from confinement to pQCD regimes, allowing us to explore how confinement in baryons emerge from QCD and how >98 % of baryon masses are generated non-perturbatively via dynamical chiral symmetry breaking.