

Search for Hybrid Baryons with CLAS12 experimental setup Baryons 2016

Lucilla Lanza, Ph. D. student

Supervisor: prof. Annalisa D'Angelo

University of Rome, Tor Vergata

INFN 19 May 2016

INFN Istitute

Istituto Nazionale di Fisica Nucleare

Outline

Physics motivation: Search of Hybrid Baryons contributions in the low Q^2 evolution of the cross section for $K^+\Lambda$ electro-production in CLAS12

- Endorsement of a LoI by the Program Advisory Committee, PAC43.
- PAC44 Proposal

•CLAS12 and FT @ JLAB: experimental setup description.

•**Simulation and fast mc reconstruction** of $K^+\Lambda$ electro-production events in CLAS12

• Sensitivity to electrocouplings: statistical significance, Legendre moments, hybrid baryon mass blind fitting analysis to study the sensitivity of our system to the presence of an hybrid contribution

Hybrid Baryons

Hybrid Baryons: baryons with explicit gluonic degrees of freedom

Augmenting the quarks q by gluons g leads to **additional states** in the spectrum relative to the expectations of the naive quark model. Phisically allowed (color singlets) states in the baryon spectrum may be constructed from $|qqqg\rangle$ «hybrid» basis states, in addition to the familiar $|qqq\rangle$ quark model states:

 $\begin{aligned} |qqq\rangle|_{color} &= 1 \otimes 8 \otimes 8 \otimes 10, \\ |qqqg\rangle|_{color} &= (1 \otimes 8 \otimes 8 \otimes 10) \otimes 8 \end{aligned}$

Hybrid Baryons in LQCD

Separating Q³G from Q³ states: $A_{1/2, 3/2}(Q^2)$ and $S_{1/2}(Q^2)$

Transverse elicity amplitude $A_{1/2}(Q^2)$, $A_{3/2}(Q^2)$ and longitudinal elicity amplitude $S_{1/2}(Q^2)$ allow to distinguish Q^3G from Q^3 states

V. I. Mokeev, CLAS Collaboration, PHYSICAL REVIEW C 86, 035203 (2012)

Separating Q³G from Q³ states: A_{1/2, 3/2} (Q²) and
S_{1/2}(Q²)
Resonant contribution in the helicity rapresentation
Helicities of final Helicities of
state hadrons: vand p

$$\langle \lambda_f | T_r | \lambda_\gamma \lambda_p \rangle = \sum_{N^* \text{ helicity} = \lambda_r - \lambda_p} \frac{\langle \lambda_f | T_{dec} | \lambda_R \rangle \langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle}{\langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle}$$
 where
 $M^* \text{ helicity} = \sum_{N^* \text{ helicity} = \lambda_r - \lambda_p} \frac{\langle \lambda_f | T_{dec} | \lambda_R \rangle \langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle}{\langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle}$ where
 $M_r^* - W^2 - i \Gamma_r(W) M_r$
Energy dependent total width
Invariant mass
The *N** hadronic decay amplitudes can be expanded in partial waves of total momentum *J*
 $\langle \lambda_f | T_{dec} | \lambda_R \rangle = \langle \lambda_f | T_{dec}^{J_r} | \lambda_R \rangle d_{\mu\nu}^{J_r} (\cos \theta^*) e^{i\mu\phi^*}$ where $\langle \lambda_f | T_{dec}^{J_r} | \lambda_R \rangle = \frac{2\sqrt{2\pi}\sqrt{2J_r} + 1M_r\sqrt{\Gamma_{\lambda_r}}}{\sqrt{\langle p_r \rangle}} \sqrt{\frac{\langle p_r \rangle}{\langle p_r \rangle}}$
The resonance electroexcitation amplitudes can be related to the $\nu_r NN^*$ electrocouplings A_{1/2}. A_{3/2}, and S_{3/2} for nucleons
 $\langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle = \frac{W}{M_r} \sqrt{\frac{8M_N M_r q_{\gamma_r}}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_r}}{q_{\gamma}}} S_{1/2}(Q^2)$ with $|\lambda_\gamma - \lambda_p| = \frac{1}{2}, \frac{3}{2}$ for transverse photons,
 $\langle \lambda_R | T_{em} | \lambda_\gamma \lambda_p \rangle = \frac{W}{M_r} \sqrt{\frac{16M_N M_r q_{\gamma_r}}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_r}}{q_{\gamma}}} S_{1/2}(Q^2)$ for longitudinal photons

V. I. Mokeev, CLAS Collaboration, PHYSICAL REVIEW C 86, 035203 (2012)

Separating Q³G from Q³ states

Transverse helicity amplitude $A_{1/2}(Q^2)$ and longitudinal helicity amplitude $S_{1/2}(Q^2)$ allow to distinguish Q³G from Q³ states

valence structure

 $S_{1/2}(Q^2)$ in comparison with transverse electro-excitation amplitude

I. G. Aznauryan et al., CLAS Collaboration, PHYSICAL REVIEW C 80, 055203 (2009)

Signature

Based on available knowledge, the *signature* for hybrid baryons may consist of :

• Extra resonances with masses with $J^p=1/2^+$ from 1.8 GeV to 2.5 GeV and decays to N $\pi\pi$ or KY final states

•A drop of the transverse helicity amplitudes $A_{1/2}(Q^2)$ and $A_{3/2}(Q^2)$ faster than for ordinary three quark states, because of extra glue-component in valence structure

•A suppressed longitudinal amplitude $S_{1/2}(Q^2)$ in comparison with transverse electro-excitation amplitude

Experiment

Scattered electrons will be detected in Forward Tagger for angles from 2.5° to 4.5°. FT allows to probe the **crucial Q² range** where hybrid baryons may be identified due to their fast dropping $A_{1/2}(Q^2)$ amplitude and the suppression of the scalar $S_{1/2}(Q^2)$ amplitude.

Scattered electrons will be detected in the Forward Detector of CLAS12 for scattering angles greater than about 6°. Charged hadrons will be measured in the full range from 6° to 130°.

Experimental setup: CEBAF

Important parameters:

- Iniector energy 45 MeV
 Temporal separation of the bunches 0,7 ns
 Halls A, B, C receive a 11 GeV electron beam, Hall D a
- 12 GeV electron with a 2 ns time interval
- •The beam can be considered almost continuum because of the high work frequency
- •Maximal intensity of the electron beam 200 μ A
- • ϵ_L (long. polarization) up to 90%

Components:

- •Iniector: At nearly the speed of light, the electron beam circulates the 7/8 mile track in 24 millionths of a second
- •LINAC: superconducting technology is used to drive electrons to higher and higher energies.
- •**Refrigeration plant:** provides liquid helium for ultralow-temperature, superconducting operation
- •Magnets: in the arcs steer the electron beam from one straight section of the tunnel to the next for up to five orbits
 •Experimental Halls: where the electron beam is delivered for simultaneous research by three teams of physicists

Experimental Setup: Forward Tagger (FT)

The Tracker (FT-Trck)

Micromegas detectors exploit the gas ionization process with charged particles to:

•Reconstruct the electron point of impact and path

Two layers of pairs of Micromegas detectors with strip readout

The strips of two different Micromegas in the same layer are orthogonal to produce a (x,y) couple

The Hodoscope (FT-Hodo)

232 scintillator tiles, 752 fibers in total

Two layers of plastic scintillator tiles

The Electromagnetic Calorimeter (FT-Cal)

Requirements:

- •High radiation hardness
- •High light yield
- •Small radiation length and Moliere radius
- •Fast recovery time
- •Good energy and time resolution

Modules of PbWO₄ scintillating crystals

High density (8.28 g/cm³)•Poor LY (fraction of % of the Na one) (100-200 γ/MeV)Small radiation lenght (0.9 cm)one) (100-200 γ/MeV)Very fast decay time (6.5 ns)•Temperature must be controlled to avoid variations in gain and noise	3 1

Simulation and fast mc reconstruction of $K^+\Lambda$ electro-production events in CLAS12 using the Gent RPR-2011 model

- Develop realistic event generator
- Simulation of *quasi-data* events including simplified experimental effects with FASTMC for channel

$$e + p \rightarrow e' + K^+ + \Lambda$$

- Selection of trigger conditions
- Production of events with different run conditions to extract the better configuration.
- Conclusions

Available data on "Strange Calc" web site	
StrangeCalc	
Reaction type: Electroproduction	
$ \begin{array}{c} & \circ p(e, e \; K^{-})K \\ & \circ p(e, e'K^{+})\Sigma^{0} \\ & \circ n(e, e'\pi^{-})p \\ & \circ p(e, e'K^{0})\Sigma^{+} \end{array} \end{array} $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	x''y''z''-frame: The z'' -axis is along the virtual photon's three- momentum, the $x''z''$ -plane is the electron plane, and the x'' - axis' direction is such that the final electron's x'' -component is positive. <i>ntl</i> -frame: The <i>l</i> -axis is along the final baryon's three-momentum, the <i>tl</i> -plane is the hadron plane, and the <i>t</i> -axis' direction is such that the virtual photon's <i>t</i> -component is positive.
Clear Energy variable: $W \odot s \odot E_{\gamma,c.m.} \odot E_{\gamma,lab}$ \circledast Fixed \bigcirc Range \bigcirc List GeV	For the options 'Fixed' and 'Range', unphysical entries will be corrected if the variable's minimum/maximum value is not fixed. E.g.: $W = 0$ GeV will be corrected to $W = W_0$, with W_0 being the threshold energy, and $-t = 0$ GeV ² will be corrected to $-t = -t_0$, with $-t_0$ being the minimum value of $-t$.
Angular variable: $\circ \cos \theta_{c.m.} \circ -t \circ -u$ $\circ \text{Fixed} \circ \text{Range} \circ \text{List}$ Photon virtuality (Q ²): $\circ \text{Fixed} \circ \text{Range} \circ \text{List}$ GeV^2	StrangeCalc data have been used for the Event Generator. From the collaboration with the Ghent group we also obtained the RPR amplitudes.
Model: RPR-2011 RPR-2007 VR No resonance contributions	 RPR-2011 model: Phys. Rev. C 86, 015212 (2012) RPR-2007 model: Phys. Rev. C 73, 045207 (2006) and Phys. Rev. C 75, 045204 (2007) VR model: Phys. Rev. C 89, 025203 (2014) and Phys. Rev. C 89, 065202 (2014)

Trigger and run conditions

Selection of trigger conditions for fastmc event generator

Selection of better run conditions for the experiment considering:

•E_{beam}= 6.6 GeV, 8.8 GeV, 11 GeV

•Torus current = ±1500 A, ±2950 A, ±3370 A

Magnetic field: inbending or outbending?

Results for run conditions: E_{beam}=6.6 GeV TorCur=-3750 A

Simulation of RPR-2011 model + hybrid contribution

Breit-Wigner ansatz for the hybrid amplitude:

 $\langle \lambda_R$

$$\begin{split} M_{\lambda_{\gamma}}^{\lambda_{p}\lambda_{Y}} &= \langle \lambda_{f} | T_{r} | \lambda_{\gamma}\lambda_{p} \rangle = \frac{\langle \lambda_{f} | T_{dec} | \lambda_{R} \rangle \langle \lambda_{R} | T_{em} | \lambda_{\gamma}\lambda_{p} \rangle}{M_{r}^{2} - W^{2} - i\Gamma_{r}M_{r}} \\ \lambda_{\lambda_{N}}, \lambda_{Y} &= \text{elicities of photon, nucleon and yperon} \end{split}$$

$$\begin{aligned} & \text{Dependence on the electrocouplings} \\ \langle \lambda_{R} | T_{em} | \lambda_{\gamma}\lambda_{p} \rangle &= \frac{W}{M_{r}} \sqrt{\frac{8M_{N}M_{r}q_{\gamma_{r}}}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_{r}}}{q_{\gamma}}} A_{1/2,3/2}(Q^{2}) \text{ with } |\lambda_{\gamma} - \lambda_{p}| = \frac{1}{2}, \frac{3}{2} \text{ for transverse photons,} \\ \langle \lambda_{R} | T_{em} | \lambda_{\gamma}\lambda_{p} \rangle &= \frac{W}{M_{r}} \sqrt{\frac{16M_{N}M_{r}q_{\gamma_{r}}}{4\pi\alpha}} \sqrt{\frac{q_{\gamma_{r}}}{q_{\gamma}}} S_{1/2}(Q^{2}) \text{ for longitudinal photons} \end{aligned}$$

Add the hybrid contribution to the RPR-2011 at amplitude level:

$$\mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} = \mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} + \mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} \qquad \mathcal{H}_{\lambda\lambda'} = \sum_{\lambda_{N},\lambda_{Y}} \mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} \left(\mathcal{M}_{\lambda'}^{\lambda_{N}\lambda_{Y}} \right)^{\dagger}$$

Study of sensitivity

Add the hybrid contribution at amplitude level and study the sensitivity
of our system to the presence of a hybrid resonance:

$$\mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} = \underbrace{\mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}}}_{\lambda} + \mathscr{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} \qquad \mathcal{H}_{\lambda\lambda'} = \sum_{\lambda_{N},\lambda_{Y}} \mathcal{M}_{\lambda}^{\lambda_{N}\lambda_{Y}} \left(\mathcal{M}_{\lambda'}^{\lambda_{N}\lambda_{Y}}\right)^{\mathsf{T}}$$

 $\lambda, \lambda_{\scriptscriptstyle N}, \lambda_{\scriptscriptstyle Y}$ = elicities of photon, nucleon and yperon

Using the relationships:

Study of sensitivity: Legendre moments

Expansion in terms of Legendre moments: a way to probe the sensitivity to a hybrid baryon contribution

$$P_m = \frac{2m+1}{2} \int_{-1}^{1} L_m(x) f(x) dx$$

$$L_{m}(x) = \sum_{j=0}^{m} a_{mj} x^{j} \qquad a_{mj} = (-1)^{(m-j)/2} \frac{1}{2^{m}} \frac{(m+j)!}{\left(\frac{(m-j)}{2}\right)! \left(\frac{(m+j)}{2}\right)! j!} \qquad m-j = even$$

$$L_{0} = 1$$

$$L_{1} = \cos\theta$$

$$L_{2} = \frac{1}{2} (3\cos\theta^{2} - 1)$$

$$L_{3} = \frac{1}{2} (5\cos\theta^{3} - 3\cos\theta)$$

$$L_{4} = \frac{1}{8} (35\cos\theta^{4} - 30\cos\theta^{2} + 3)$$

$$L_{5} = \frac{1}{8} (63\cos\theta^{5} - 70\cos\theta^{3} + 15\cos\theta)$$

$$L_{6} = \frac{1}{16} (231\cos\theta^{6} - 315\cos\theta^{4} + 105\cos\theta - 5)$$

The appearance of a structure in a single Legendre moment at the same value of W for each Q² point is likely a signal from a resonance contribution.

LT: Legendre moments analysis

Significant structures appear in most of the Legendre moments at the value of W = 2.2 GeV, corresponding to the mass of the added hybrid baryon

TT: Legendre moments analysis

Significant structures appear in most of the Legendre moments at the value of W = 2.2 GeV, corresponding to the mass of the added hybrid baryon

 χ^2 vs A_{1/2}

The dependency of χ^2 calculated as

on a variable $A_{1/2}$ has been estimated for Legendre moments $P_0,...,P_6$ for different configurations:

- E_{beam} = 6.6 GeV, 8.8 GeV
- Q² = 0.1 GeV², 0.562 GeV², 1.002 GeV²

For each curve the value of $A_{1/2}$ for which the χ^2 exceeds 4 has been obtained.

 χ^2 vs M_{res}

The dependency of χ^2 calculated as

on a variable M_{res} has been estimated for Legendre moments $P_0,...,P_6$ for different configurations:

- E_{beam} = 6.6 GeV, 8.8 GeV
- A_{1/2} = 20, 40
- Q² = 0.1 GeV², 0.562 GeV², 1.002 GeV²

$$\chi^2$$
 vs M $_{
m res}$ and A

The χ^2 has been calculated as:

$$\chi^{2} = \frac{1}{N_{d.p.}} \sum_{W,cos\vartheta \ \varphi} \frac{\left(\frac{\sigma_{fixed} - \sigma_{variable}}{\delta^{2}}\right)^{2}}{\delta^{2}} = \frac{1}{N_{d.p.}} \sum_{W,cos\vartheta \ \varphi} \left(\frac{\frac{\sigma_{fixed} - \sigma_{variable}}{\sigma_{variable}}}{\sigma_{variable}}\right)^{2} N_{ev}$$

Where

 σ_{fixed} : model + hybrid, 2 resonances

• Resonance 1:
$$J = \frac{1}{2}$$
, $A_{1/2} = fixed$, $M_{res}^1 = 2.1 \ GeV$

- Resonance 2: $J = \frac{3}{2}$, $A_{3/2} = fixed$, $A_{1/2} = fixed$, $M_{res}^3 = 2.2 \ GeV$
- $\sigma_{variable}$: model + hybrid, 2 resonances
 - Resonance 1: $J = \frac{1}{2}$, $A_{1/2} = variable(0 50, step 1)$, $M_{res}^1 = variable(1.8 2.5 GeV, step 20 MeV)$
 - Resonance 2: $J = \frac{3}{2}$, $A_{\frac{3}{2}} = variable (0 50, step 1)$, $A_{1/2} = variable(0 50, step 1)$, $M_{res}^3 = variable (1.8 2.5 GeV, step 20 MeV)$
- N_{ev} = number of expected events in 50 days beamtime for each bin in Q², W, $cos\vartheta$, φ

 χ^2 has been estimated for variable M_{res}^1 , M_{res}^3 and $A_{1/2} = A_{3/2}$ for the configurations:

- $(J_{1/2}^+: A_{1/2}, J_{3/2}^+: A_{1/2}, A_{3/2}^-) = (10, 10, 10), (20, 20, 20), (40, 40, 40)$
- E_{beam} = 6.6 GeV
- Q² = 0.562 GeV²
- $\Gamma_{res} = 0.25 \text{ GeV}$

 A_{fixed} =20: χ^2 vs M_{res} and A

 A_{fixed} =20: χ^2 vs M_{res} and A $\gamma_{_{\rm V}}\,p\,\rightarrow\,\Lambda\,\,K^* \quad Q^2 = 0.562\,\,GeV^2,\, A_{_{1/2}} = 20,\, A_{_{3/2}} = 20,\, S = 0,\, E_{_{\rm E}} = 6.6\,\,GeV,\, M_{_{\rm I}} = 2.1,\, M_{_{\rm 3}} = 2.2\,\,GeV^2,\, A_{_{1/2}} = 2.0,\, A_{_{3/2}} = 2.0,\, S = 0,\, E_{_{\rm E}} = 0.6\,\,GeV,\, M_{_{\rm I}} = 2.1,\, M_{_{\rm 3}} = 2.2\,\,GeV^2,\, M_{_{\rm I}} = 2.1\,\,GeV^2,\, M_{$ $\gamma_{_{\rm V}}\,p\,\rightarrow\,\Lambda\,\,K^* \quad Q^2 = 0.562\,\,GeV^2,\, A_{_{1/2}} = 20,\, A_{_{3/2}} = 20,\, S = 0,\, E_{_{\rm E}} = 6.6\,\,GeV,\, M_{_{\rm I}} = 2.1,\, M_{_{\rm 3}} = 2.2\,\,GeV^2,\, A_{_{1/2}} = 2.0,\, A_{_{3/2}} = 2.0,\, S = 0,\, E_{_{\rm E}} = 0.6\,\,GeV,\, M_{_{\rm I}} = 2.1,\, M_{_{\rm 3}} = 2.2\,\,GeV^2,\, M_{_{\rm I}} = 2.1\,\,GeV^2,\, M_{$ A = 20 A = 20 1296 1296 Entries Entries _{م 200} .∼88 چ 180-70-160 60 140 50-120-100-40-80-30 60 20 40-20-10 25 M^{32,4} M^{32,4} C^{2,3} 2.2 2.1 2 1.9 25 M^{32,4} esiGey2.2 1.9 ^{2.3} M^{2.4}_{res}GeVJ 2.2 2.3 Mres[GeV] 2.2 2.1 2.1 2 1.9 1.8 1.8 1.9 1.8 1.8 $\gamma_{_{\rm V}}\,p\,\rightarrow\,\Lambda\,\,K^*\ \ \, Q^2=0.562\;GeV^2,\,A_{_{1/2}}=20,\,A_{_{3/2}}=20,\,S=0,\,E_{_{\rm e}}=6.6\;GeV,\,M_{_{\rm I}}=2.1,\,M_{_{\rm 3}}=2.2\,GeV^2$ A = 20 M³_{res}[GeV] 2.5 1296 Entries 2.4 **Two different** 40 scales 2.3 2.2 30 2.1 20 Minimum 10 1.9 1.8 0 1.9 2 2.1 2.2 2.3 2.4 2.5 M¹_{res}[GeV]

Conclusions

Simulation and fast mc reconstruction of $K^+\Lambda$ electro-production events in CLAS12

•Run condition: E_{beam}=6.6 GeV and Torus Current = -3750 A presents good values of efficiency

•Search of hybrid baryons in runs with standard conditions of magnet and beam energy can be integrated with dedicated runs.

Study of sensitivity

•Hybrid resonance has been added at **amplitude level** to study the sensitivity of our system to a hybrid resonance

•Legendre moments analysis has been employed as a way to identify resonances

Future Work

Next step:

•Full implementation in CLAS12 simulation and reconstruction

- GEMC
- CLARA framework

• Reconstruction of the interaction strength from simulated data

Future Work

Next step:

•Full implementation in CLAS12 simulation and reconstruction

- GEMC
- CLARA framework

•Reconstruction of the interaction strength from simulated data

Thank you

Bibliography

- CLAS12 Forward Tagger (FT) Technical Design Report, The CLAS12 Collaboration
- Draft CLAS-Note, An Inner Calorimeter for CLAS/DVCS experiments, I. Bedlinskiy, et Al.
- CLAS/DVCS Inner Calorimeter Calibration, R. Niyazov, S. Stepanyan
- A Letter of Intent to the Jefferson Lab PAC43, Search for Hybrid Baryons with CLAS12 in Hall B, A. D'Angelo et al.
- J. Dudek et al., 2012
- V. Mokeev et al., 2012, Experimental study of the P11(1440) and D13(1520) resonances from the CLAS data on $ep \rightarrow e\pi^+\pi^- p$
- I. G. Aznauryan et al., CLAS Collaboration, PHYSICAL REVIEW C 80, 055203 (2009)
- [1] S. Capstick and B. D. Keister, Phys. Rev. D 51, 3598 (1995)
- [2] I. G. Aznauryan, Phys. Rev. C 76, 025212 (2007).
- [3] Z. P. Li, V. Burkert, and Zh. Li, Phys. Rev. D 46, 70 (1992).