Resolution Study for First Experiment $K^+\Lambda$ channel, low Q^2 , $E_{beam} = 6.4$ GeV

Annalisa D'Angelo, Lucilla Lanza

University of Rome, Tor Vergata

November 27, 2017

Outline

1 Trigger and Run Conditions

2 Kinematics

- 3 Run Conditions
 - Negative Outbending Torus Current
 - Negative Inbending Torus Current

Acceptance Table

5 Distinguish Σ from Λ

Trigger and Run Conditions

Process studied

$$e^-
ho
ightarrow e^- K^+ \Lambda$$

• Trigger Selection:

- ▶ 1 *e*⁻ anywhere (maximum acceptance but not realistic)
- 1 e^- in FT (excessive high rate)
- ▶ 1 e^- in CLAS (Outbending: Q² > ~ 1 GeV²)
- ▶ 1 e^- in CLAS or 1 e^- in FT + 1 fwd ($heta_{had}$ < 30°) hadron (p or K⁺)
- ▶ 1 e^- in CLAS or 1 e^- in FT + 2 fwd hadrons (p and K⁺)
- ▶ 1 e^- in CLAS or 1 e^- in FT + 1 had (p/K⁺/ π^-) anywhere (fwd + ctl)

• Run Conditions:

- ► E_{beam} = 6.4 GeV, Torus Current = 100 % (Outbending, -3375 A), Solenoid = 60 %.
- ► E_{beam} = 6.4 GeV, Torus Current = -100 % (Inbending, 3375 A), Solenoid = 60 %.

Kinematic

Generated Angular Correlations

Annalisa D'Angelo, Lucilla Lanza

Generated and Reconstructed Particles Trigger: $1 e^{-}$ anywhere, Fiducial Cuts applied

Annalisa D'Angelo, Lucilla Lanza

Kinematics

Generated and Reconstructed π^-

Annalisa D'Angelo, Lucilla Lanza

Kinematics

Reconstructed Electron Energy in FT

Annalisa D'Angelo, Lucilla Lanza

Efficiency Curve

Annalisa D'Angelo, Lucilla Lanza

Resolution

Trigger: 1 *e*⁻ anywhere, Fiducial Cuts applied Inclusive electron acceptance: FT: 47 % CLAS: 18 %

Annalisa D'Angelo, Lucilla Lanza

Resolution Study for First Experim

Negative Outbending Torus Current

MM Reconstruction

Trigger: 1 e^- in FT (2.5° < θ_{e^-} < 4.5°) Inclusive electron acceptance: 47 %

Annalisa D'Angelo, Lucilla Lanza

Trigger: 1 e^- in CLAS ($\theta_{e^-} > 6.0^\circ$) Inclusive electron acceptance: 18 %

Resolution

Trigger: 1 e^- anywhere, Fiducial Cuts applied Inclusive electron acceptance: FT: 47% CLAS: 6%

Annalisa D'Angelo, Lucilla Lanza

Resolution Study for First Experim

MM Reconstruction

Trigger: 1 e^- in FT (2.5° < θ_{e^-} < 4.5°)

Inclusive electron acceptance: 47%

Annalisa D'Angelo, Lucilla Lanza

Resolution Study for First Experimer

Trigger: 1 e^- in CLAS ($\theta_{e^-} > 6.0^\circ$) Inclusive electron acceptance: 6%

Acceptance Table

	Negative	Negative	
Trigger	Outbending	Inbending	
1 e ⁻ FT	47%	47%	
$1 e^-$ CLAS	18%	6%	
$1 e^-$ anywhere	65%	54%	
$1 e^- FT + 1$ fwd had	7%	16%	
$1 e^- FT + 1$ ctl had	12%	19%	
$1 e^- FT + 2$ fwd had	0	1%	
$1 \ e^-$ CLAS $/1 \ e^-$ FT $+ 1$ forward had	25%	22%	
$1~e^-$ CLAS $/1~e^-$ FT $+~1$ had (ctl or fwd)	32%	31%	

Where:

1 fwd had= 1 forward hadron (p / K^+ / π^-) 1 ctl had= 1 central hadron (p / K^+ / π^-)

Acceptance for 1 e^- CLAS $/1~e^-$ FT + 1 had anywhere, Negative Outbending

Acceptance for 1 e^- CLAS /1 e^- FT + 1 had:

Trigger	pK^+	$p\pi^-$	$\pi^- K^+$	${\sf p}\pi^- K^+$	1 had
$1 \; e^- \; CLAS/1 \; e^- \; FT + 1$ fwd had	7.7%	3.1%	3.6%	1.3%	23%
$1 \; e^- \; CLAS/1 \; e^- \; FT + 1 \; ctl \; had$	8.4%	3.6%	4.0%	1.4%	28%
$1 \ e^- \ \text{CLAS}/1 \ e^- \ \text{FT} + 1 \ \text{had} \ (\text{ctl/fwd})$	8.5%	3.6%	4.0%	1.4%	30%

Where:

1 fwd had= 1 forward hadron (p / K^+ / $\pi^-)$

1 ctl had= 1 central hadron (p / K^+ / $\pi^-)$

Distinguish Σ from Λ : Negative Outbending Trigger: 1 e^- FT

 Λ^0_{mass} : 1115,683 \pm 0.006 MeV

Σ^0_{mass} : 1192.642 \pm 0.024 MeV

Distinguish Σ from Λ : Negative Outbending Trigger: 1 e^- CLAS

 Λ_{mass}^{0} : 1115,683 \pm 0.006 MeV Σ_{mass}^{0} : 1192.642 \pm 0.024 MeV

Distinguish Σ from Λ : Negative Outbending Trigger: 1 e^- anywhere

 Λ^0_{mass} : 1115,683 \pm 0.006 MeV Σ^0_{mass} : 1192.642 \pm 0.024 MeV

Trigger:

1 e^- in CLAS ($\theta_{e^-} > 6.0^\circ$) or 1 e^- in FT ($2.5^\circ < \theta_{e^-} < 4.5^\circ$) + 1 fwd hadron (p or K^+ or π^-)

Fitting function: sum of 2 Lorentzians

$$f(x) = \frac{p_0}{(x-p_1)^2 + p_2^2} + \frac{p_3}{(x-p_4)^2 + p_5^2}$$

Trigger:

1 e^{-} in CLAS ($\theta_{e^{-}} > 6.0^{\circ}$) or 1 e^{-} in FT ($2.5^{\circ} < \theta_{e^{-}} < 4.5^{\circ}$) + 1 hadron (p or K^{+} or π^{-})

Fitting function: sum of 2 Lorentzians

$$f(x) = \frac{p_0}{(x-p_1)^2 + p_2^2} + \frac{p_3}{(x-p_4)^2 + p_5^2}$$

Conclusions

Evidences from simulations:

- Electrons reconstructed from CLAS present a better resolution, but low acceptance.
- On the contrary, electrons from FT are reconstructed with worse energy resolution but with higher statistics.
- Using a trigger with 1 e^- in CLAS or 1 e^- in FT + 1 forward hadron (p/K^+) the global acceptance is lower than 25%.
- Adding the trigger from the central detector 1 e^- in CLAS or 1 e^- in FT + 1 central hadron (p/ K^+/π^-) the statistics increases by a factor 1.3