RG-K Win18 K⁺ Λ Monte Carlo Analysis – pass-1 vs. pass-2 Reconstruction

Pass-1: 6.5.6.2, pass-2v1: 8.3.2, pass-2v2: 8c.3.2

Areas of investigation:

- Forward Tracking:
 - Charged hadron reconstruction efficiency
- Central Tracking:
 - Missing mass resolution
 - Charged hadron reconstruction efficiency vs. $p_{T},\,v_{z}$

- EG: genKYandOnePion, ep \rightarrow e'K⁺ Λ , $\Lambda \rightarrow$ p π^{-} Q²: [0.2:5.5] GeV², W: [1.55:3.3] GeV, vz: [-5.5:0.5] cm
- EB PID, chi2pid < 8, β_{FD} : [0.4:1.1], β_{CD} : [0.2:1.1]
- Pass-1: no pt^{min}, zv cuts
- Pass-2v1: p_t^{min} =125 MeV, z_v < 30 cm
- Pass-2v2: p_t^{min} =250 MeV, $z_v < 1$ cm

RG-K Win18 K⁺ Λ Monte Carlo Analysis – pass-1 vs. pass-2 Reconstruction

Conclusion: p_T cut on pass-2v2 reconstruction cut into the acceptance, especially for π^-

RG-K Win18 K⁺ Λ Monte Carlo Analysis – pass-1 vs. pass-2 Reconstruction

Pass-1: 6.5.6.2, pass-2v1: 8.3.2, pass-2v2: 8c.3.2

Conclusion: Efficiency reduced in pass-2 for events with detached vertex due to beamline constraint