

RG-K $K^+\Lambda$ Monte Carlo Analysis Pass-1 vs. Pass-2 Reconstruction D.S. Carman – November 21, 2022

Figure 1: $MM(e'K^+)$ spectra from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the FD. The right plots also require a proton in the FD with a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 2: $MM(e'K^+)$ spectra from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the FD. The right plots also require a proton in the CD with a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 3: $MM(e'K^+)$ spectra from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the CD. The right plots also require a proton in the FD with a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 4: $M(p\pi^{-})$ invariant mass spectra from the RG-K $K^{+}\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL. The different rows are for the different FD/CD p and π^{-} topologies as labeled.

Figure 5: $M(p\pi^{-})$ invariant mass spectra from the RG-K $K^{+}\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL. The plots show the sort for the p FD, π^{-} FD topology with the requirement of a K^+ in the FD (left) or CD (right). The plots also include a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 6: $M(p\pi^{-})$ invariant mass spectra from the RG-K $K^{+}\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL. The plots show the sort for the p CD, π^{-} CD topology with the requirement of a K^+ in the FD (left) or CD (right). The plots also include a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 7: $M(p\pi^{-})$ invariant mass spectra from the RG-K $K^{+}\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 - 8c.3.2). The electron is reconstructed in the ECAL. The plots show the sort for the p FD, π^{-} CD topology with the requirement of a K^{+} in the FD (left) or CD (right). The plots also include a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 8: $M(p\pi^{-})$ invariant mass spectra from the RG-K $K^{+}\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL. The plots show the sort for the p CD, π^{-} FD topology with the requirement of a K^{+} in the FD (left) or CD (right). The plots also include a cut on the $MM^2(e'K^+p)$ distribution to select the ground state hyperons.

Figure 9: Transverse K^+ momentum spectra from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the CD.

Figure 10: Transverse p momentum spectra from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the p in the CD. The plots show the sort for the π^- CD (left) and π^- FD (right) topologies.

Figure 11: Transverse π^- momentum spectra from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the π^- in the CD. The plots show the sort for the *p* CD (left) and *p* FD (right) topologies.

Figure 12: Transverse hadron momentum vs. v_z from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the hadrons K^+ (left), p (middle), and π^- (right) in the CD.

Figure 13: Hadron acceptance vs. transverse hadron momentum from the RG-K $K^+\Lambda$ Monte Carlo (with background) for E_b =6.535 GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the hadrons K^+ (top), p (middle), and π^- (bottom) in the CD.

Figure 14: Hadron acceptance vs. z_v from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the hadrons K^+ (top), p (middle), and π^- (bottom) in the CD.

Figure 15: Hadron acceptance vs. vertex position $(\sqrt{x_v^2 + y_v^2 + z_v^2})$ from the RG-K $K^+\Lambda$ Monte Carlo (with background) for E_b =6.535 GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 -8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the hadrons K^+ (top), p (middle), and π^- (bottom) in the CD.

Figure 16: Comparison of reconstructed (left) and generated (right) K^+ transverse momentum distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the CD.

Figure 17: Comparison of reconstructed (left) and generated (right) p transverse momentum distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the p in the CD.

Figure 18: Comparison of reconstructed (left) and generated (right) π^- transverse momentum distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the π^- in the CD.

Figure 19: Comparison of reconstructed (left) and generated (right) $K^+ z_v$ distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the CD.

Figure 20: Comparison of reconstructed (left) and generated (right) $p z_v$ distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for E_b =6.535 GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the pin the CD.

Figure 21: Comparison of reconstructed (left) and generated (right) $\pi^- z_v$ distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the π^- in the CD.

Figure 22: Comparison of reconstructed (left) and generated (right) K^+ vertex position $(\sqrt{x_v^2 + y_v^2 + z_v^2})$ distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the K^+ in the CD.

Figure 23: Comparison of reconstructed (left) and generated (right) p vertex position $(\sqrt{x_v^2 + y_v^2 + z_v^2})$ distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the p in the CD.

Figure 24: Comparison of reconstructed (left) and generated (right) π^- vertex position $(\sqrt{x_v^2 + y_v^2 + z_v^2})$ distributions from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL and the π^- in the CD.

Figure 25: Generated transverse hadron momentum distributions for reconstructed K^+ (left), p (middle), and π^- (right) in the CD from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL.

Figure 26: Transverse π^- momentum vs. $M(p\pi^-)$ for π^- in the CD. from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 -8.3.2, pass-2 v2 8c.3.2). The left column is for the topology with the p in the CD and the right column is for the topology with the p in the FD. The electron is reconstructed in the ECAL.

Figure 27: Transverse hadron momentum difference $(p_T^{recon} - p_T^{truth})$ for K^+ (left), p (middle), and π^- (right) in the CD vs. transverse hadron momentum from the RG-K $K^+\Lambda$ Monte Carlo (with background) for E_b =6.535 GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL.

Figure 28: Transverse hadron momentum difference $(p_T^{recon} - p_T^{truth})$ for K^+ (left), p (middle), and π^- (right) in the CD vs. $MM(e'K_C^+)$ (left), $IM(p_C\pi^-)$, and $IM(p\pi_C^-)$ (right) from the RG-K $K^+\Lambda$ Monte Carlo (with background) for $E_b=6.535$ GeV (outbending torus polarity) comparing the pass-1 reconstruction results (6.5.6.2) to the pass-2 reconstruction results (pass-2 v1 - 8.3.2, pass-2 v2 8c.3.2). The electron is reconstructed in the ECAL.

- genKYandOnePion Event Generator:
 - $\begin{array}{l} \ ep \rightarrow e' K^+ \Lambda, \ \Lambda \rightarrow p \pi^- \ ({\rm with \ proper} \ c \tau) \\ \ Q^2 : \ 0.2 \ \text{--} \ 5.5 \ {\rm GeV}, \ W : \ 1.55 \ \text{--} \ 3.3 \ {\rm GeV}, \ z_v : \ \text{--} 5.5 \ \text{--} \ 0.5 \ {\rm GeV} \end{array}$
- Analysis:
 - EB PID
 - chi2pid < 8 (e', hadrons), $p_{min}=100$ MeV (CD), $p_{max}=300$ MeV
 - β_{FD} : 0.4 1.1, β_{CD} : 0.2 1.1
- pass-1 6.5.6.2: No cuts
- pass-2 v
1 8.3.2: $p_T^{min}{=}125$ MeV, $z_v{<}30~{\rm cm}$
- pass-2 v2 8c.3.2: $p_T^{min}{=}250~{\rm MeV},~z_v<\!\!1~{\rm cm}$