$^{67}\mathrm{Cu}$ Production by Photon Activation of $^{71}\mathrm{Ga}$

P. Degtiarenko, K. Jordan, G. Kharashvili

Jefferson Lab

⁶⁷Cu is a desirable radionuclide for both therapeutic and diagnostic purposes. The efforts to establish a reliable supply of ⁶⁷Cu have exclusively focused on proton, neutron, and photon activation of zinc. We investigate the feasibility of 67 Cu production via the 71 Ga (γ, α) 67 Cu reaction using a high power electron accelerator (U.S. patent pending). Despite a modest crosssection for this reaction, physical properties of gallium (wide temperature range in liquid state and low vapor pressure) make the method potentially competitive. FLUKA Monte Carlo code was used to optimize gallium irradiation setup and to calculate $\sim 50 \text{ mCi/h}$ production of 67 Cu using a 50 kW electron beam on a ⁷¹Ga target. Natural gallium target was used to experimentally validate the FLUKA calculations. For the activation study, an electron beam with 18.5 MeV energy was chosen because this is the threshold energy for the ${}^{69}\text{Ga}(\gamma, 2n){}^{67}\text{Ga}$ reaction. Above this energy measuring ${}^{67}\text{Cu}$ yield in activated natural gallium is difficult due to the interference of ⁶⁷Ga, which decays with nearly the same half-life as ⁶⁷Cu and the decay photons have identical energies. Results of the validation study and projected ⁶⁷Cu yields at higher energies are presented.