

Cu-67 ISOTOPE PRODUCTION (overview)

Based on the 2017' ST Review presentation by G. Kharashvili, July 2017

Hari Areti¹, Pavel Degtiarenko², Sundaresan Gobalakrishnan³, Joe Gubeli¹, Andrew Hutton¹, Kevin Jordan¹, <u>George Kharashvili²</u>, George Neil¹, Doug Wells⁴, Jamal Zweit³

- ¹ Jefferson Lab Accelerator Division / CASA
 ² Jefferson Lab Radiation Control
 ³ Virginia Commonwealth University
- ⁴ New Mexico Tech

Isotope Kick-off mtg, Aug 2018

⁶⁷Cu for Targeted Radiotherapy

- Theranostic radionuclide
 - 141 keV mean energy $β^-$ for therapy (has the range in tissue of the order of a cell diameter)
 - 185 keV energy photons for SPECT imaging
 - Can be paired with ⁶⁴Cu for PET imaging
- Near-ideal half-life of 61.8 hours
 - Convenient for production, transportation, and delivery to patient
 - Same order as biological half-life of copper and zinc (⁶⁷Cu decays to stable ⁶⁷Zn)
- Favorable biochemistry approved for human trials
 - Not a bone or an organ seeker

< JSA

ENERGY Office of Science

Not acutely toxic – both Cu and Zn are essential trace nutrients

⁶⁷Cu Properties

- T_{1/2} = 61.83 h
- Therapeutic:
 - β^{-} ranges in tissue are of the order of a cell diameter

Endpoint Energy (keV)	Yield (%)
183.5	1.1
392.4	57
483.7	22
577	20

Diagnostic

U.S. DEPARTMENT OF ENERGY Science

- 185 keV photon with 48.7% yield
- 93.3 keV photon with 16.1% yield

How is ⁶⁷Cu Produced?

⁶⁵ Ga z: 31 n: 34 Jπ: 3/2- T _{1/2} :15.2 m 0.2 ecay ec β+ 100%	⁶⁶ Ga z: 31 n: 35 Jπ: 0+ T _{1/2} :9.49 h 0.03 ecay ec β+ 100%	⁶⁷ Ga z: 31 n: 36 Jπ: 3/2- T _{1/2} :3.2617 d 0.0005 ecay ec 100%	⁶⁸ Ga z: 31 n: 37 Jπ: 1+ T _{1/2} :67.71 m 0.08 ecay ec β+ 100% ec 100%	⁶⁹ Ga z: 31 n: 38 Jπ: 3/2- T _{1/2} :stable	⁷⁰ Ga z: 31 n: 39 Jπ: 1+ T _{1/2} :21.14 m 0.05 ecay β- 99.59% ec 0.41%	71_{Ga} z: 31 n: 40 J π : 3/2- T _{1/2} :stable 71 Ga	⁷² Ga z: 31 n: 41 Jπ: 3- T _{1/2} :14.10 h 0.02 ecay β- 100%
⁶⁴ Zn z: 30 n: 34 Jπ: 0+ T _{1/2} :stable	⁶⁵ Zn z: 30 n: 35 Jπ: 5/2- T _{1/2} :243.93 d 0.09 ecay ec β+ 100%	⁶⁶ Zn z: 30 n: 36 Jπ: 0+ T _{1/2} :stable	$\frac{67}{2n}$ z: 30 n: 37 J π : 5/2- T _{1/2} :stable	⁶⁸ Zn z: 30 n: 38 Jπ: 0+ T _{1/2} :stable	⁶⁹ Zn z: 30 n: 39 Jπ: 1/2- T _{1/2} :56.4 m 0.9 ecay β- 100%	$\begin{array}{c} ^{70}\text{Zn} \\ \text{z: } 2 \text{ n: } 40 \\ \text{r: } 0 \text{+} \\ T_{1/2} \text{: } 3.8 \ 10^{18}\text{y} \\ \text{ecay } 2\beta \text{- } 100\% \\ \textbf{70} \begin{array}{c} 2\beta \text{- } 2\beta \text{- } 2\% \\ \textbf{70} \begin{array}{c} 2\beta \text{- } 2\beta $	⁷¹ Zn z: 30 n: 41 Jπ: 1/2- T _{1/2} :2.45 m 0.10 ecay β- 100%
⁶³ Cu z: 29 n: 34 Jπ: 3/2- T _{1/2} :stable	64 Cu z: 29 n: 35 Jπ: 1+ T _{1/2} :12.701 h 0.002 ecay ec β+ 61.5% β- 38.5%	⁶⁵ Cu z: 29 n: 36 Jπ: 3/2- T _{1/2} :stable	⁶⁶ Cu z: 29 n: 37 Jπ: 1+ T _{1/2} :5.120 m 0.014 ecay β- 100%	$\begin{array}{c} {}^{67}\text{Cu}\\\text{z: 29 n: 38}\\\text{J\pi: 3/2-}\\\text{T}_{1/2}\text{:}61.83 h 0.12\\\text{ecav }\beta 100\%\\\text{67}\text{Cu} \end{array}$	⁶⁸ Cu z: 22 n: 39 J.: 1+ 1 _{1/2} :30.9 s 0 ε ecay β- 150%	⁶⁹ Cu z: 25 n: 40 Jπ: 3/2- T _{1/2} :2.85 m 0.15 ecay β- 100%	⁷⁰ Cu z: 29 n: 41 Jπ: 6- T _{1/2} :44.5 s 0.2 ecay β- 100% β- 100%

• ⁶⁸Zn(p, 2p)⁶⁷Cu

n

U.S. DEPARTMENT OF Office of Science

- ⁷⁰Zn(p, α)⁶⁷Cu
- ⁶⁷Zn(n, p)⁶⁷Cu

SJSA

- ⁶⁸Zn(γ, p)⁶⁷Cu
- ⁷¹Ga(γ, α)⁶⁷Cu
 - 2017 JSA Patent
 Submitted

Demand and Availability of ⁶⁷Cu

- Historical lack of an adequate and reliable supply has impeded the development of ⁶⁷Cu applications
- By some estimates (based on treating a half of all new Non-Hodgkin Lymphomas) there is a potential US demand of ~12000 Ci / year

Smith, Bowers, Ehst, "The production, separation, and use of ⁶⁷Cu for radioimmunotherapy: A review", *Applied Radiation and Isotopes* 70 (2012) 2377–2383

• ⁶⁷Cu is currently produced:

< JSA

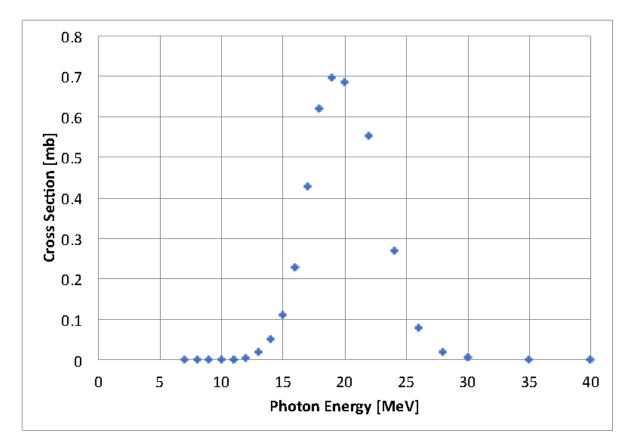
ENERGY Office of Science

- Brookhaven National Laboratory: Proton irradiation of zinc, produced periodically, ~60% of activity upon delivery is composed of ⁶⁴Cu
- Idaho Accelerator Center: Photoproduction in zinc up to 10s of mCi / week, not intended for human use
- Higher specific activities and improved radiological purity are desired

Photoproduction of ⁶⁷Cu in Gallium via ⁷¹Ga(γ,α)⁶⁷Cu (1)

- Gallium has favorable properties for high power targets
 - ✓ Low melting point of 30 °C
 - ✓ High boiling point of 2204 °C
 - ✓ Low vapor pressure

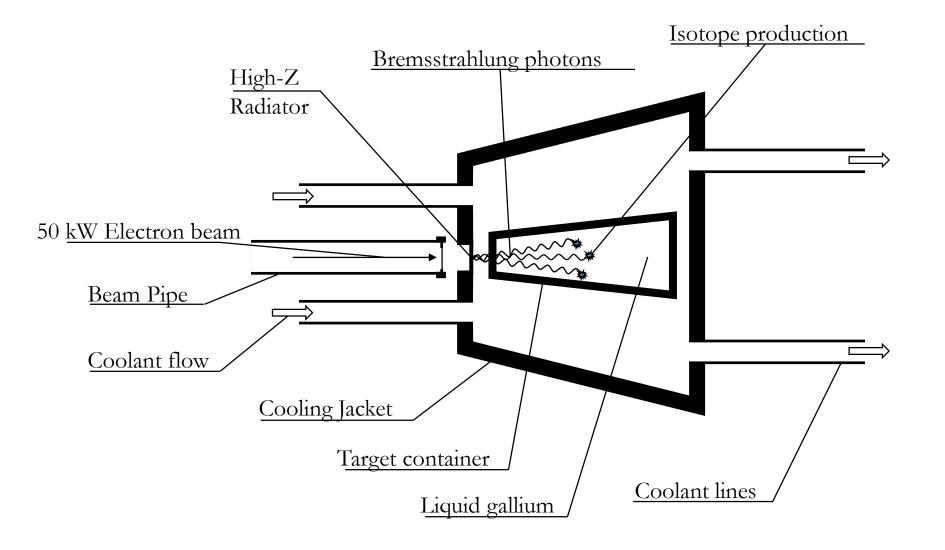
< JSA

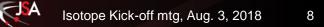

ENERGY Office of Science

- **X** Corrosive to metals except tungsten and tantalum
- A 50 kW irradiation of optimal Ga target will produce *
 - 100s mCi of ⁶⁷Cu per week in natural gallium
 - > 1 Ci/week in ⁷¹Ga (40% of natural Ga)
 - Typical medical dose of ⁶⁷Cu order of 10 mCi
 - * Yields are calculated using FLUKA and scaled with data

Photoproduction of ⁶⁷Cu in Gallium via ⁷¹Ga(γ , α)⁶⁷Cu (2)

 Modest cross-section of ⁷¹Ga(γ,α)⁶⁷Cu reaction can be compensated by high beam power and a thick target

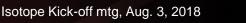

Koning *et al.* "TENDL-2015: TALYS-based evaluated nuclear data library" https://tendl.web.psi.ch/ tendl_2015/tendl2015.h tml



-JSA

Photoproduction of ⁶⁷Cu in Gallium via ⁷¹Ga(γ , α)⁶⁷Cu (3)

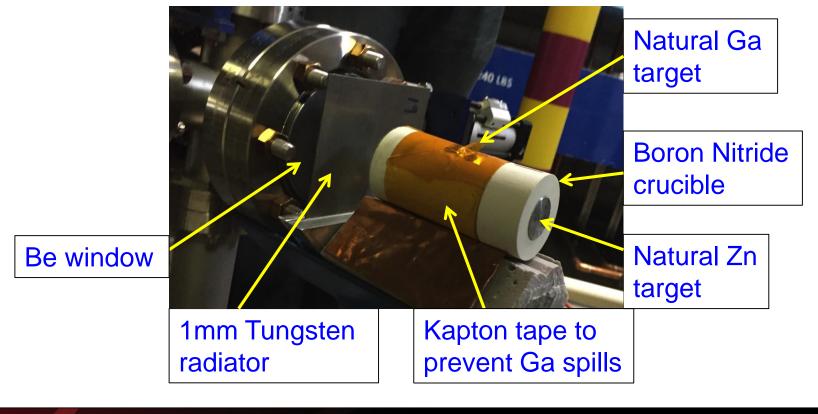
ENERGY Office of Science



Overall Objectives and First Steps

- The overall objective is to integrate
 - Production
 - Chemical Separation
 - Delivery

- First (opportunistic) steps
 - Confirm ⁶⁷Cu production in gallium
 - Chemically separate ⁶⁷Cu from gallium
 - Investigate ⁶⁷Cu delivery mechanisms


First Opportunistic Irradiation Test

- Irradiation of Ga and Zn targets during beam studies in CEBAF injector:
 - 18.5 MeV (to avoid interference from ⁶⁷Ga), 2.5 μ A, 1 h
 - ~ 0.1 µCi ⁶⁷Cu detected in each

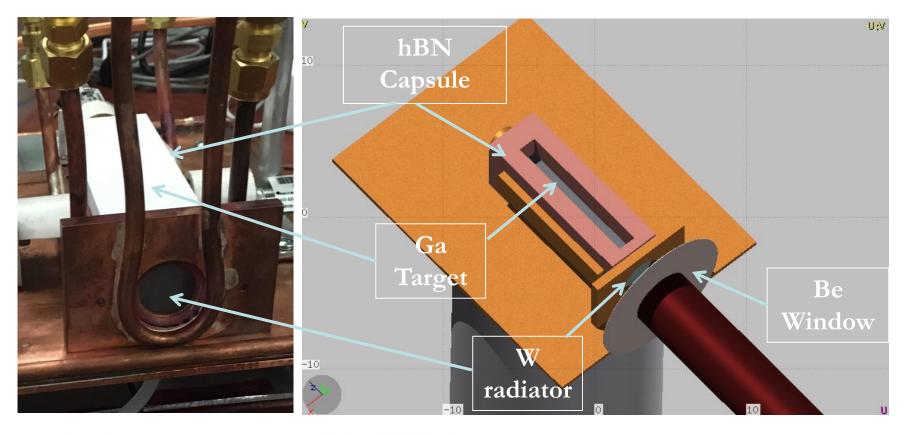
Isotope Kick-off mtg, Aug. 3, 2018

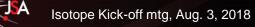
-JSA

ENERGY Office of Science

Chemical Separation Test

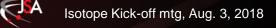
- Chemical separation test at Virginia Commonwealth University (VCU)
 - 1 mCi of ⁶⁷Cu was obtained from the National Isotope Development Center, shipped from BNL to VCU
 - The sample was dissolved in HCI and added to Gallium Chloride in solution
 - Separation by liquid-liquid extraction and column chromatography recovered ~95% of the radioactive copper after a single pass





Second Opportunistic Irradiation Test (1)

- During 2017 beam studies of 4K operation in CEBAF injector a parasitic isotope irradiation opportunity was realized
- 85 g gallium target irradiated for several hours at ~1 kW (18.65 MeV, 50 μA) with the intent to chemically separate ⁶⁷Cu

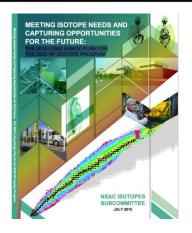


ENERGY Science

Second Opportunistic Irradiation Test (2)

- Due to failure of monitoring instrumentation, run was terminated earlier than anticipated
- ~130 µCi ⁶⁷Cu was produced, ~70 µCi was available at the time of sample retrieval (expected to produce ~500 µCi)
- Due to transportation and communication issues did not proceed with chemical separation
- The two low energy irradiation tests showed reasonable agreement with the model predictions
 - FLUKA (our primary tool for activation calculations) appears to overestimate ⁶⁷Cu yields in Ga by approximately a factor of 2 at 18.5 MeV maximum bremsstrahlung energy

Summary and Proposed Future Work


- ⁶⁷Cu production via the ⁷¹Ga(γ,α)⁶⁷Cu reaction at LERF: Production of high specific activity theranostic isotope using high power electron accelerator
 - Measured photoproduction of ⁶⁷Cu at low energies (< 20 MeV) with no ⁶⁴Cu content
 - Chemically separated ⁶⁷Cu from Ga (obtained from BNL, then dissolved in Ga)
 - Proposed future work

ENERGY Office of Science

- Complete smooth integration of photoproduction and chemical separation
- Produce ⁶⁷Cu in Ga target at optimal electron beam energies (> 30 MeV)
- Develop high power target system

NSAC Isotopes Recommendations on Isotope R&D

Science

- "Continue support for R&D on the production of *alpha-emitting* radioisotopes"
- Support R&D into the production of high specific activity theranostic radioisotopes"
- "Continue support for R&D on the use of electron accelerators for isotope production"
- Support R&D on the development of irradiation materials for targets that will be exposed to extreme environments to take full advantage of the current suite of accelerator and reactor irradiation facilities"

