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1. introduction

In this note I will (ultimately) describe the implementation of the meson-baryon interac-
tions in CLAS PWA. There are several possibilities for doing the fits, which depend on the
choice of kinematical variables. I will discuss two: the one currently used and emphasizes
the upper vertex (meson-meson interaction) and the Dalitz plot analysis.

Here I will begin with the standard CLAS PWA and focus on implementation of the
baryon amplitudes.

2. Kinematics

The reaction is

(1) γ(pA, σ) +N(pB, λ)→ K−(p1) +K+(p2) +N(pD, λ
′)

The variables in parenthesis refer to momenta and helicities, respectively. The GJ frame is
defined as the rest frame of the KK̄ pair, with the y-axis perpendicular to the production
plane, the z-axis in the direction of the incoming photon, and the nucleons having negative
x-momentum components [1] (see Fig. 1)

It is convenient to introduce a set of Lorentz invaraints defined in Fig. 2. Being invariant
these can be computed from any set (e.g. lab-frame) 4-vectors and used to express all
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Figure 1. GJ kinematics
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Figure 2. Lorentz invaraints

kinematical variables needed in computation of the amplitudes. Specifically, in the current
PWA, the independent variables are: s, t2, sD, θ, φ with

√
s being the overall c.m. energy,

t2 the square of momentum transfer to the nucleon,
√
sD the KK̄ invariant mass and

finally θ, φ describing the direction of motion of the K+ in the GJ frame. In terms of these
variables, the other variables needed for evaluation of amplitudes are given by (with µ and
M being the kaon and nucleon mass, respectively)

EA =
sD − t2
2
√
sD

, |pA| = EA

ED =
s− sD −M2

2
√
sD

, |pD| =
√
E2
D −M2

EB = ED +
√
sD − EA, |pB| =

√
E2
B −M2

cos ε =
p2B − p2D − p2A

2|pD||pA|

cos ξ =
|pA|+ |pD| cos ε

|pB|

E1 =

√
sD
2

, |p1| =
√
E2

1 − µ2

s2 = µ2 +M2 + 2EDE1 − 2|pD||p1|(cos ε cos θ + sin ε sin θ cosφ)

t1 = µ2 − EA
√
sD + 2|pA||p1| cos θ(2)

2.1. Amplitudes. The amplitudes describing the ”upper” vertex i.e. the amplitudes in
the current PWA are expressed as a sum over partial waves (in the following I drop the
explicit dependence on s assuming fixed photon energy).
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Figure 3. Kinematics relevant for Regge parametrization of the K-exchange

(3) A = Aσλλ′(t2, sD, θ, φ) =
∑
LM

aLMσλλ′(t2, sD)YLM (θ, φ)

At fixed t2 and sD the partial wave amplitudes aLM are obtained by fitting the θ, φ
dependence. The baryon K−p amplitude is given by (schematically)

(4) B = Bσλλ′(t2, sD, θ, φ) = βσ(t1)R(s′ − u′, t1)AKNλλ′ (pB, pD, p1)

where (cf. Fig. 3)

(5)
s′ − u′

2
= sD +

t1 − t2
2
− µ2

The details of the residue function β, Regge propagator, R and the KN amplitude AKN

will be provided soon. The bottom line however, is that once the explicit formulas for these
functions are given, B can be expressed (binned) in exactly the same variables as A, i.e.
momentum transfer, t1 and the KK̄ invariant mass sD. Thus for a given set of helicity
combinations, H = σλλ′ the total amplitude is then given by

(6) Tσλλ′(t2, sD, θ, φ) =
∑
LM

aLMσλλ′(t2, sD)YLM (θ, φ) +Bσλλ′(t2, sD, θ, φ)

(To be precise there will be two sets of B-amplitudes, one for K−p and the other for
K+p)

2.2. Parity invariance, reflectivity and rank. In the rest frame of the KK̄ system
other particles are in the xz plane. It is thus convenient to combine parity with rotation
by 1800 around the y axis, i.e. use the reflection in the direction perpendicular to the
reaction plane, since it leaves all momenta unchanged.



4 ADAM SZCZEPANIAK

(7) Y = e−iπJyP

For a particle with helicity λ moving in the xz plane it is easy to show that

(8) Y |J, λ〉 = η(−1)J−λ|J − λ〉
with momentum unchanged and thus not shown explicitly. Parity invariance (for either A
or B) amplitudes implies,

(9) Tσλλ′(t2, sD, θ, φ) = −(−1)λ
′−λT−σ−λ−λ′(t2, sD, θ,−φ)

For the partial wave amplitudes aLM

aLM−σ−λ−λ′(t2, sD) = −(−1)λ−λ
′
∫
d cos θdφY ∗LM (θ, φ)Aσλλ′(t2, sD, θ,−φ)

= −(−1)λ−λ
′−M

∫
d cos θdφY ∗L−M (θ,−φ)Aσλλ′(t2, sD, θ,−φ)(10)

it leads to

(11) aL−M−σ−λ−λ′(t2, sD) = −(−1)λ−λ
′+MaLMσλλ′(t2, sD)

The reflectivity basis amplitudes are defined as linear combinations of the a’s, such
that they separate symmetric from anti-symmetric component of the amplitude under Y -
reflection:

∑
LM

aLMσλλ′YLM =
∑

L,M>1

[
aLMσλλ′YLM − (−1)λ

′−λ+MaLM−σ−λ−λ′YL−M

]
+
∑

L,M=0

aL0σλλ′YL0

=
∑

L,M>1

√
2L+ 1

4π

[
aLMσλλ′d

L
M0(θ)e

iMφ − (−1)λ
′−λaLM−σ−λ−λ′d

L
M0(θ)e

−iMφ
]

+
∑

L,M=0

√
2L+ 1

4π

1

2

(
aL0σλλ′ − (−1)λ

′−λaL0−σ−λ−λ′
)
dL00(θ)

=
∑

L,M≥0

√
2L+ 1

4π

[
aLM+
σλλ′ d

L
M0(θ) cos(Mφ) + iaLM−σλλ′ d

L
M0(θ) sin(Mφ)

]
(12)

where we defined

(13) a
L|M |ε
σλλ′ ≡ a

L|M |
σλλ′ − ε(−1)λ

′−λa
L|M |
−σ−λ−λ′

for M > 0 and

(14) aL0+σλλ′ ≡
1

2

(
aL0σλλ′ − (−1)λ

′−λaL0−σ−λ−λ′
)

for M = 0.
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The amplitudes a
L|M |ε
H (H = σλλ′) satisfy

(15) a
L|M |ε
H = −ε(−1)λ−λ

′
a
L|M |ε
−H

In absence of the B amplitudes, the unpolarized cross section is proportional to

IA =
∑
H

|Aσλλ′ |2 =
∑

H=σλλ′

∑
LL′,MM ′≥0

√
2L+ 1

4π

√
2L′ + 1

4π
dLM0(θ)d

L
M ′0(θ)[

(aLM+
H )∗(aL

′M ′+
H ) cos(Mφ) cos(M ′φ) + (aLM−H )∗(aL

′M ′−
H ) sin(Mφ) sin(M ′φ)

]
(16)

Thus there is no interference between ε = + and ε = − amplitudes. Including the B
amplitudes gives

TH =
∑

L,M≥0

√
2L+ 1

4π

[
aLM+
σλλ′ d

L
M0(θ) cos(Mφ) + iaLM−σλλ′ d

L
M0(θ) sin(Mφ)

]
+BH(17)

(18) I = IA + IA+B + IA−B + IB

with

(19) IB =
∑
H

(BH)∗BH

(20) IA+B =
∑

L,M≥0

√
2L+ 1

4π

[
(aLM+
H )∗BH + (aLM+

H )B∗H

]
dLM0(θ) cos(Mφ)

(21) IA−B =
∑

L,M≥0

√
2L+ 1

4π

[
(aLM−H )∗BH + (aLM−H )B∗H

]
dLM0(θ) sin(Mφ)
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