Entanglement in Hard Scattering

Old Dominion University and Jefferson Laboratory

Ted Rogers

March 18, 2015 LNF SIDIS working group meeting, Frascati March 18

Types of QCD Factorization

•	 Parton Model: Classical probability intuition Fa Unique universal PDFs -> clear hadron structure interpretation 	<i>Strong</i> <i>ctorization</i> n.	
•	 Collinear Factorization in real pQCD: – Like parton model but with caveats. – Optimal choice of μ is hard scale dependent -> Evolution 	Caveats Needed	
•	 TMD Factorization in DY, SIDIS in real pQCD: Like Collinear but with even more caveats. Sivers sign flip = non-universality from Wilson line geometric Soft Evolution = Strongly universality scaling violations. 	More Ƴ∙ caveats	
•	 TMD Factorization for back-to-back H₁ + H₂ -> H₃ + H₄ + X: No disentangling even through complex Wilson lines. Ward identities incompatible with separate gauge invariant definitions. 	Still more caveats	5?

Collins-Type Effects

"This implies that the quark and antiquark are individually unpolarized, but that their spins are correlated; the spin state is thus an entangled state."

- J. C. Collins, textbook (2011)

TMD in Inclusive Scattering

1) Transverse single spin asymmetries:

- Hyperon transverse polarization (1976-) polarizing fragmentation function?
- 3) Prompt photon.

TMD in Inclusive Scattering

TMD in Inclusive Scattering

Transverse Momentum Dependent Functions at Large x?

Transverse Momentum Dependent Functions at Large x?

Transverse Momentum Dependent Functions at Large x?

Transverse Momentum Dependent Fracture Functions

Transverse Momentum Dependent Fracture Functions

Collins-Type Effects

"This implies that the quark and antiquark are individually unpolarized, but that their spins are correlated; the spin state is thus an entangled state."

- J. C. Collins, textbook (2011)

Transverse Momentum Dependent Fracture Functions

Transverse Momentum Dependence with Double Hadrons

• Additional structures accessible.

• Evolution (strongly universal).

• Details of fragmentation/hadronization process.

 Collinear Gluon Distribution -> TMD Gluon Distribution

Superleading Contribution $\propto k_1^\mu k_2^\nu$

Collinear Gluon Distribution: One Gluon

$$ig_{s}f_{\alpha\beta\kappa}\left[\frac{n_{J}^{\mu_{2}}\mathcal{L}_{j\mu_{2}}^{\alpha\beta}}{k_{2}\cdot n_{J}} - \frac{n_{J}^{\mu_{1}}\mathcal{L}_{\mu_{1}j}^{\alpha\beta}}{k_{1}\cdot n_{J}} + \frac{n_{J}^{\mu_{1}}n_{J}^{\mu_{2}}}{(k_{1}+k_{2})\cdot n_{J}}\left(\frac{k_{2\,j}}{k_{1}\cdot n_{J}} - \frac{k_{1\,j}}{k_{2}\cdot n_{J}}\right)\mathcal{L}_{\mu_{1}\mu_{2}}^{\alpha\beta}\right]$$

(J. Collins , TCR (2013))

Collinear Gluon Distribution: One Gluon

Collinear Gluon Distribution: One Gluon

Familiar Eikonal Lines

(J. Collins ,TCR (2013))

Extra Transverse Momentum Dependence

Conclusions

- Interesting QCD effects beyond strong (parton model) factorization.
- Kinematics and transverse momentum in inclusive processes?
- Fracture functions and entanglement: new operators structures to probe. *(See M. Anselmino, V. Barone, A. Kotzinian, (2011))*
- Gluon target effects?