<html>
<head>
</head>
<body>
<font face="Calibri" size="2">
<div> </div>
<div align="center"><font face="Times New Roman" size="6" color="navy"><b>Old Dominion University</b></font></div>
<div align="center"><font face="Times New Roman" size="6" color="navy"><b>Department of Physics</b></font></div>
<div align="center"><font face="Times New Roman" size="6" color="navy"> </font></div>
<div align="center"><font face="Times New Roman" size="6" color="#31849B"><b>Fall Colloquium Series</b></font></div>
<div align="center"> </div>
<div align="center"><font face="Times New Roman" size="5" color="#17365D"><b>Tuesday September 18, 2012</b></font></div>
<div align="center"><font color="navy"> </font></div>
<div align="center"><font face="Times New Roman" size="5" color="#31849B"><b>"Cardiac Arrhythmias and the Geodesic Principle for Filaments in Excitable Media"</b></font></div>
<div align="center"> </div>
<div align="center"><br>
<font face="Times New Roman" size="5" color="#1F497D"><b>Dr. Christian Zemlin</b></font></div>
<div align="center"><font face="Times New Roman" size="5" color="#1F497D"><b>Old Dominion University</b></font></div>
<div align="center"><font face="Times New Roman" size="3"> </font></div>
<div align="left"><font face="Times New Roman" size="3">In the Cardiac Electrophysiology Lab we study the mechanisms of arrhythmias both experimentally and from a theoretical point of view. Arrhythmias
are disturbances in the normal electrical activity of the heart. In experiments, we extract animal hearts visualize their electrical activity using voltage-sensitive fluorescent probes. The most dangerous arrhythmias are reentrant arrhythmias; they are composed
of self-sustained, high-frequency waves called "scroll waves" that rotate around one-dimensional phase singularities called filaments. Scroll waves exist not only in the heart but in a large variety of excitable media. The complex dynamics of scroll waves
can be most efficiently described by via the dynamics of their filaments. Particularly elegant is the "geodesic principle" that allows the computation of steady state filaments for a large class of excitable media.</font></div>
<div><font face="Times New Roman" size="3"> </font></div>
<div> </div>
<div align="center"><font face="Times New Roman" size="4">Presentation: OCNPS 200 @ 3:00 pm</font></div>
<div align="center"><font face="Times New Roman" size="4">Refreshments: Atrium @ 2:30 pm</font></div>
<div align="center"><font face="Times New Roman" size="3"> </font></div>
<div> </div>
<div align="center"><font face="Times New Roman" size="5">More details at <a href="http://sci.odu.edu/physics/">http://sci.odu.edu/physics/</a></font></div>
<div align="center"><font face="Times New Roman" size="5">All are Welcome!</font></div>
<div align="center"> </div>
<div> </div>
<div> </div>
</font>
</body>
</html>