Technical Homework Questions

Answers to Questions

Krishna Kumar Spokesperson UMass, Amherst Howard Fenker Project Manager Jefferson Lab

Jefferson Lab Moller Project Director's Review

January 15, 2020

Office of Science

Answer to Tuesday Jan. 14, HW Question 1, part 1

Present the list of recommendations from the recent MOLLER *Cost Review* and Design Review. Give the Project team's reaction to the recommendations. How much do they impact preparation for CD-1 review?

Cost Review Recommendations

1. Refine the cost estimate for the upstream beamline modifications prior to the December 2019 Design Review.

First revision has added \$1M to this cost. This is included in the cost estimate shown today (1/14/20). Engineering Division has since taken a more careful look at this and has reduced the estimate by \$0.5M.

2. Review estimates to ensure that shipping costs, duties, fees and any taxes are taken into account in the project plan.

Project activities have been scrubbed with this in mind and resulting changes have been implemented. Allowances for QA/QC inspections were also revised.

- 3. Develop means for tracking risk mitigation measures as identified in the risk registry. **Tracking forms and procedure already in place (inherited from 12GeV Project).**
- 4. Develop a plan such that in the case risk opportunities are realized, the project updates the baseline, tracks progress and provides oversight for those activities.

Such a plan is described in the pPEP.

Answer to Tuesday Jan. 14, HW Question 1, part 1

1. Refine the cost estimate for the upstream beamline modifications prior to the December 2019 Design Review.

First revision has added \$1M to this cost. This is included in the cost estimate shown today (1/14/20). Engineering Division has since taken a more careful look at this and has reduced the estimate by \$0.5M.

2. Review estimates to ensure that shipping costs, duties, fees and any taxes are taken into account in the project plan.

Project activities have been scrubbed with this in mind and resulting changes have been implemented. Allowances for QA/QC inspections were also revised and are shown explicitly. Total costs, shipping FOB JLab, duties, etc. are to be included in quotations.

- Develop means for tracking risk mitigation measures as identified in the risk registry.
 Tracking forms and procedure already in place (inherited from 12GeV Project). Jessie showed a sample tracking form. They are also in prebrief.
- 4. Develop a plan such that in the case risk opportunities are realized, the project updates the baseline, tracks progress and provides oversight for those activities.

Such a plan is described in the pPEP. "...in the event that non-DOE funding for project scope is obtained, or that project scope contribution opportunities are realized, the project will update the baseline accordingly, continue to track the scope's progress, and provide oversight for those activities."

TIME IS NEEDED TO INCORPORATE 1 AND 2 IN RLS. OTHERWISE NO IMPACT ON CD-1 REVIEW.

Cost Review follow-up...

Cost Review Recommendation 1— Refined cost estimate for upstream beamline: (noted in Butler's Risk Management Talk) Note: Estimated cost of Beamline reconfiguration was reduced \$500k after database was frozen for this review.

(WBS 1.06.04 \$1.5M→\$1.0M)

This correction has NOT been applied to any slides.

Cost Review Recommendation 2—

Scrubbed activity list for needed QA/QC tests, inspections

Activity ID	MO BOE	Activity Name	Start	Finish	Planned Duration	Planned Labor Units	Planned Labor Cost	Planned NL Units	Planned NL Cost	Mat
10302130	EJ	JLab receipt acceptance test for coils-Labor	16-Aug-22	29-Aug-22	10	78	\$10,866	0	\$0	
10302135	EJ	JLab receipt acceptance test for coils-M&S	16-Aug-22	29-Aug-22	10	0	\$0	5000	\$5,900	
		Write Specification for the Air Light Guides	01-Jul-21	08-Jul-21	5	80	\$7,043	0	\$0	
		Prepare Shower Max Detector Air Light Guides Procurement Package	12-Jul-21	16-Jul-21	5	8	\$782	0	\$0	
		Vendor effort Shower Max Detector Air Light Guides	20-Jul-21	14-Sep-21	40	0	\$0	0	\$0	
		ACCEPT: Shower Max Detector Air Light Guides	15-Sep-21	15-Sep-21	1	0	\$0	0	\$0	
		Assemble and Inspect Air Light Guides	16-Sep-21	08-Oct-21	17	95	\$8,061	0	\$0	
		Write Specification for Tungsten Sheets	01-Jul-21	08-Jul-21	5	60	\$5,444	0	\$0	
		Prepare Shower Max Detector Tungsten Sheets Procurement Packag	12-Jul-21	16-Jul-21	5	8	\$782	0	\$0	
		Vendor effort Shower Max Detector Tungsten Sheets	20-Jul-21	12-Oct-21	60	0	\$0	0	\$0	
		ACCEPT: Shower Max Detector Tungsten Sheets	13-Oct-21	13-Oct-21	1	0	\$0	0	\$0	
		Inspect Tungsten Sheets	14-Oct-21	27-Oct-21	10	30	\$2,805	0	\$0	
		Write Specification for Shower Max Detector Phototubes	09-Jul-21	15-Jul-21	5	40	\$5,109	0	\$0	
		Prepare Shower Max Detector Phototubes Procurement Package	19-Jul-21	23-Jul-21	5	8	\$782	0	\$0	
		Vendor effort Shower Max Detector Phototubes	27-Jul-21	24-Jan-22	120	0	\$0	0	\$0	
		ACCEPT: Shower Max Detector Phototubes	25-Jan-22	25-Jan-22	1	0	\$0	0	\$0	
		Inspect Phototubes	26-Jan-22	15-Feb-22	15	90	\$7,273	0	\$0	
		Write Specification for Phototube Bases	16-Jul-21	22-Jul-21	5	40	\$5,109	0	\$0	
		Prepare Shower Max Detector Phototube Bases Procurement Packa	26-Jul-21	30-Jul-21	5	8	\$782	0	\$0	
		Vendor effort Shower Max Detector Phototube Bases	03-Aug-21	02-Nov-21	65	0	\$0	0	\$0	
Direct	tor's D	ACCEPT: Shower Max Detector Phototube Bases	03-Nov-21	03-Nov-21	1	0	\$0	0	\$0	
Direct		Inspect Phototube Bases	04-Nov-21	30-Nov-21	17	60	\$5,039	0	\$0	
			1		1					

Answer to Tuesday Jan. 14, HW Question 1, part 2

Present the list of recommendations from the recent MOLLER Cost Review and **Design** Review. Give the Project team's reaction to the recommendations. How much do they impact preparation for CD-1 review?

Design Review Recommendations

1. We recommend that MOLLER specify in one location the physics acceptance and
collimation for the experiment.Before CD-1: aim for Feb 15

2. We recommend that MOLLER formulate a plan to search for the possible sources of the inconsistency of the beam current monitors and continue to improve the noise performance of the beam current monitors. *Before CD-2: aim for July 1*

3. We recommend that MOLLER simulate the single-sector and whole detector sensitivities for the existing design with the tolerances specified in the CDR. *After CD-1: aim for early summer*

4. We recommend that Jlab with input from MOLLER organize a preliminary liquid hydrogen target and associated shielding structure safety review for design input.

Definitely after CD-1; under discussion about relationship to CD-2 5. We recommend that MOLLER study in simulation the robustness of the background extraction procedure and MOLLER asymmetry with respect to hotspots, soft backgrounds, etc. *Aim for early Fall, after 6) and then 3) are completed*

6. We recommend that MOLLER recheck and record their estimates of the sensitivity of the response of the different components of the detector signals to the raster motion. **Before CD-1: aim for Feb 15**

- Recommendation 2: aim for July 1.
 - Revisit the Qweak experience and quantitatively assess the possible problem and also study possible time dependence of a possible BCM discrepancy (first attempt in backup slide)
 - Evaluate the performance of Hall A BCMs during PREX-II and CREX (though sensitivities are not quite the same)
 - Document the proposed plan for improvements including bench tests to be carried out (short summary in backup slides)
 - 10 ppm resolution: Run Phase I (3 to 4 months) ~ 0.5 ppb sensitivity
 - Formulate a plan for parasitic tests during SBS running
- Recommendation **3**: aim for early summer
 - Once recommendation 6 is documented, a series of test cases by varying collimation around the specified tolerances can be simulated
- Recommendation 5: aim for early Fall
 - Once recommendation 3 is completed and we are done optimizing the quartz tile segmentation for optimal background subtraction, run a series of simulations with asymmetric soft backgrounds to evaluate impact on extraction of signal and background from global fit

Director's Review of MOLLER, January 14-16, 2020

Answer to Tuesday Jan. 14, HW Question 5

Question: Present projected physics measurement and the impact if one only uses the currently achieved beam related systematic uncertainties from the 6-GeV and 12-GeV PV measurements at JLab.

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Norm. of the Kinematic Factor	0.5
Beam (second order)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
Beam (position, angle, energy)	0.4
Beam (intensity)	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \rightarrow (\pi, \mu, K) + X$	0.3
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Linearity	0.1
Total systematic	1.1
Total uncertainty	2.4

MOLLER projected uncertainties

НСВА	HAPPEX-II	Qweak	PREX-2	MOLLER (required)
Intensity	400 ppb	30 ppb	25 ppb	10 ppb
Energy	0.2 ppb	0.8 ppb	2 ± 1.2 ppb	<0.7 ppb
Position Differences	1.7 nm	5 nm	<4 ± 4 nm	0.6 nm
Angle Differences	0.2 nrad	0.2 nrad	<0.4 ± 0.8 nrad	0.12 nrad
Size Asymmetry	-	< 10 ⁻⁴	< 10 ⁻⁵	<10 ⁻⁵

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Norm. of the Kinematic Factor	0.5
Beam (second order)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$	0.4
Beam (position, angle, energy)	0.7
Beam (intensity)	0.8
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to (\pi, \mu, K) + X$	0.3
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Linearity	0.1
Total systematic	1.5
Total uncertainty	2.6

MOLLER projected uncertainties using best observed values from 6 and 12 GeV eras

Physics impact: MOLLER result would be 4.6 times (rather than 5) better than E158; model independent mass reach would be 7.2 TeV (rather than 7.5 TeV).

Jefferson Lab

Present all the project reviews that appear in the MOLLER RLS including Conceptual, Preliminary, Final

Design Reviews, Safety Reviews, Procurement Readiness Review and Annual Reviews. Summarize the time and resources dedicated to the reviews in the RLS.

Activity ID	Activity Name	Date
1-2	SVT - From 2-01005M (CD-2/3A Review)	1-Oct-20
1-4	SVT - From 2-01010M (CD-3 Review)	3-Jan-22
2-01000M	CD-1 Review	21-Feb-20*
2-01005M	CD-2/3A Review	21-Aug-20*
2-01010M	CD-3 Review	30-Nov-21*
2-01015	SVT - From 2-01010M (CD-3 Review)	30-Sep-22
2-01015M	FY22 Review	30-Sep-22
2-01020	SVT - From 2-01015M (FY22 Review)	29-Sep-23
2-01020M	FY23 Review	29-Sep-23
2-01025	SVT - From 2-01020M (FY23 Review)	30-Sep-24
2-01025M	FY24 Review	30-Sep-24
2-04010	SVT - From 3-05035M (Target Hydrogen Service Code & Documentation Review)	22-Apr-22
2-04010M	Target Hydrogen Safety System Design Review	22-Apr-22
2-06000M	MOLLER Detectors Preliminary Design Review	1-Oct-20
2-06020	SVT - From 3-06090M (GEM Final Design Review)	25-Aug-23
2-06020M	GEM Final Design Review	25-Aug-23
3-03065M	Spectrometer Design Reviews Complete	19-Jun-23
3-05015M	Target Controls Review	21-Dec-21
3-05020M	Target Prelim Design Review	16-Aug-19
3-05035M	Target Hydrogen Safety System Design Review	29-Mar-22
3-06000M	MOLLER Detectors Preliminary Design Review	1-Oct-20
3-06090M	GEM Final Design Review	1-May-23
3-07000M	DAQ & Trigger Preliminary Design Review	30-Jun-20
3-07005M	DAQ & Trigger Design Review	1-Apr-21
10101030	MOLLER Reviews M&S (FY20)	30-Sep-20
10101035	MOLLER Reviews M&S (FY21)	30-Sep-21
10101040	MOLLER Reviews M&S (FY22)	30-Sep-22
10101045	MOLLER Reviews M&S (FY23)	29-Sep-23
10101050	MOLLER Reviews M&S (FY24)	30-Sep-24
10202005	Vacuum System Design Review	31-Mar-21

Homework question 2 -- p2

Activity ID	Activity Name	Date
10203080	Hydrogen System Safety Systems Design Review	29-Mar-22
10204040	Helium Service Design Review	29-Mar-22
10205145	Target Loop Design Review	17-Mar-23
1030202135	Toroid Enclosure - Preliminary Design Review	11-Jan-23
1030202145	Toroid Enclosure - Final Design Review	27-Mar-23
10302050	Coils Preliminary Design Review	12-Jan-21
10302070	COILS + STRONGBACKS + FRAME - Final Design Review	13-Jul-21
1030302130	Toroid Enclosure - Preliminary Design Review	12-Dec-22
1030302140	Toroid Enclosure - Final Design Review	30-Jan-23
10303095	Coils Preliminary Design Review	7-Apr-22
10303115	COILS + STRONGBACKS + FRAME - Final Design Review	10-Aug-22
10305035	Conduct Preliminary Design Review for Collimator #1	28-May-21
10305075	Conduct Final Design Review for Collimator #1	2-Sep-21
10305085	Conduct Preliminary Design Review for Collimator #2	22-Sep-22
10305100	Conduct Final Design Review for Collimator #2	6-Jan-23
10305110	Conduct Preliminary Design Review for Collimator #4	28-May-21
10305150	Conduct Final Design Review for Collimator #4	12-Aug-21
10305160	Conduct Preliminary Design Review for Collimator #5	14-Sep-21
10305175	Conduct Final Design Review for Collimator #5	29-Nov-21
10305185	Conduct Collimator/Blocker #6 - Preliminary Design Review	6-Jan-22
10305225	Conduct Collimator/Blocker #6 - Final Design Review	22-Mar-22
10305235	Conduct Collimator/Blocker #7 - Preliminary Design Review	21-Apr-22
10305250	Conduct Collimator/Blocker #7 - Final Design Review	6-Jul-22
10306020	Conduct Preliminary Design Review for Water Chiller	5-Apr-23
10306030	Conduct Final Design Review for Water Chiller	5-Jun-23
10307070	Conduct Preliminary Design Review for Beam Pipes	17-May-23
10307080	Conduct Final Design Review for Beam Pipes	19-Jun-23
10311010	Conduct Experimental Readiness Review	24-Sep-24
10501038	Vendor effort Complete Design and Hold Final Design Review	1-May-23

Summarize the time and resources dedicated to the reviews in the RLS.

There are 45 reviews in the RLS.

- The CAMs and Project Leadership time is Level-of-Effort. This effort includes preparing for and participating in reviews. In addition, the RLS carries the following on-project loads that explicitly support reviews:
 - Labor Hours 1,199
 - -Labor Cost \$178,364
 - -Non Labor Cost \$107,400

3) Describe how the time and resources for significant procurements are planned in the MOLLER RLS.

			1											5.0000			51/2022				
	Activity ID	∇	Activity Name	e					La	Planned bor Units	Nonlabor N	Planned Iaterial Cost	- FF	FFFFFFFF	FFFFFFFFF	FFFFFF	FFFFFFFFF	FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	FFFFFFFF	025 FFFFFFFF	FFFFFFFFFFF
7	103020	05	SOTR effo	rt for Downs	tream Torus	Coils and h	ardware- La	abor		383.00	0.00	0.00				S.	OTR effort for D	Downstream Torus	Coils and ha	irdware-Lab	or
7	103020	10	SOTR effo	rt for Downs	tream Torus	Coil and ha	rdware- M8	S		0.00	36000.00	0.00				S	OTR effort for D	Downstream Torus	Coil and har	dware- M&S	
1	1030210	00	RQN: Down	stream Toru	us Coils (7)					0.00	0.00 8	345,118.00			RQN Downs	stream Ton	us Coils (7)				
2	1030210)5	Prepare Do	ownstream 1	Torus Coils (7)) Procurer	nent Packa	ige		23.00	0.00	0.00			Prepare Do	ownstream	Torus Coils (7)) Procurement Pa	ckage		
3	1030211	0	AWARD: D	ownstream	Torus Coils	(7)				0.00	0.00 8	345,118.00			AWARD: D	ownstream	Torus Coils (7	7)			
	1030211	5	First Coil De	elivery						0.00	0.00	0.00			F	First Coil De	elivery				
4	1030212	20	Vendor Fab	o Downstrea	m Torus Co	ils (7)				0.00	0.00	0.00				Ve	ndor Fab Dow	instream Torus Co	ils (7)		
5	1030212	?5	ACCEPT: D	ownstream	Torus Coils	(7)				0.00	0.00 8	345,118.00				A	CCEPT: Down	stream Torus Coils	s (7)		
6	1030213	30	JLab receip	ot acceptanc	ce test for co	ils-Labor				78.00	0.00	0.00				l JL	_ab receipt acc	ceptance test for co	vils-Labor		
6	1030213	35	JLab receip	ot acceptanc	ce test for co	ils-M&S				0.00	5000.00	0.00	, I II.			E JL	ab receipt acc	ceptance test for co	vils-M&S		,
			Procurem	ents follow	a Template,	they each ha	we the follo	wing activiti	ies:												
			1	A Requisit	ion - Lets th	e CAM Know	when the F	R needs to b	e submitted	to Jlab pr	ocurement o	ffice. **Jlab	uses these a	ctivities whe	en developing a	Funding p	rofile.				
			2	The prepa	ration of the	procureme	nt package	- Any Project	Labor asso	ciated with	n Technical Ev	aluations or	Negotiatio	ns. Note the	Procurement S	taff only ch	arges to the pr	roject for Travel ass	ociated with	a procurem	ent.
			3	The Award	activity - Sl	nows when t	he monev h	as been oblig	gated to the	Vendor.											
			4	A Vendor I	Effort activit	v - Denicts t	he duration	the vendor r	need to pro	ducetheh	ardware or se	rvice							-		
			5	An Accent	activity - Th	is is when th	e navment	will be made	to Vendor	** Ilah use	es this when a	leveloning th	e Cost prof	file							
			6	An Inspect	tion activity	Not always	noodod as a	omoprocure	omonts com	o with do	cumentation	Sometimes	roquiros tra	wel to the Ve	ndor for the in	spection					
				COTD/Sub	Contractivity	- NUL always	nicel Denne		fart Thisis			temenes	equites tra	ver to the ve		al hudget 7		luunun naadad basa			
			/	SOTR(Sub	Contracting	concer rech	inical kepre	sentative) En	fort - This is	the flab re	echnical enor	t to manage	ne vendor,	sometimes	will have a trave	ei budget. I	nese are not al	Iways needed based	a on the size c	or complexit	y of the procuren
			_																		
		Note: Thi	is template	is used for	r most proc	urements.	Small proc	urements m	nay not hav	ve the SO	TR effort. Al	l procureme	ents will h	ave the Req	uisition, Awar	rd and Acc	ept.				

Homework question 3 (enlarged)

Ac	ctivity ID	∇	Activity Name						La	Planned abor Units	Planned Nonlabor	Planned Material Cost
7	103020	05	SOTR effort	t for Downsti	ream Torus	Coils and ha	ardware- La	bor		383.00	0.00	0.00
7	103020	10	SOTR effort	t for Downsti	ream Torus	Coil and ha	rdware- M&S	5		0.00	36000.00	0.00
1	1030210	00	RQN: Downs	stream Toru	s Coils (7)					0.00	0.00	845,118.00
2	1030210)5	Prepare Do	wnstream T	orus Coils (i	7)) Procuren	nent Packag	ye		23.00	0.00	0.00
3	1030211	0	AWARD: Do	ownstream 1	Torus Coils ((7)				0.00	0.00	845,118.00
	1030211	5	First Coil De	livery						0.00	0.00	0.00
4	1030212	20	Vendor Fab	Downstrear	m Torus Coi	ls (7)				0.00	0.00	0.00
5	1030212	25	ACCEPT: Do	ownstream 1	Torus Coils ((7)				0.00	0.00	845,118.00
6	1030213	80	JLab receipt	t acceptance	eptance test for coils-Labor					78.00	0.00	0.00
6	1030213	85	JLab receipt	t acceptance	e test for coi	ls-M&S	1	1		0.00	5000.00	0.00
			Procureme	nts follow a	Template, t	hey each ha	ve the follow	wing activiti	es:			
			1	A Poquiciti	on lotatha	CAMKnow	when the Pl	P noods to be	o cubmitta	d to llab p	rocuromont	offico **Ilabuco
			1	AREQUISIT	on - Lets the	CAIVINIOW	when the Pi	Anne Dara la at	e submitte		Taska isal	Gille, "Jiab use
			2	The prepar	ation of the	procureme	nt package -	Any Project	Labor asso	clated with	n lechnicai	Evaluations or Ne
			3	The Award	activity - Sh	ows when the	he money ha	as been oblig	ated to th	e Vendor.		
			4	A Vendor E	ffort activity	y - Depicts th	ne duration	the vendor r	need to pro	oduce the h	ardware or	service.
			5	An Accept	activity - Thi	s is when th	e payment v	vill be made	to Vendor	. ** Jlab us	es this wher	developing the C
			6	An Inspect	ion activity-	Not always	needed as so	ome procure	ements cor	ne with do	cumentatio	n. Sometimes req
			7	SOTR(Sub 0	Contracting	Officer Tech	nical Repres	entative) Eff	ort - This i	s the Jlab Te	echnical effo	ort to manage the
		Net a Thi										
		Note: This	s template	is used for	most proci	irements. S	small procu	irements m	lay not ha	ive the SO	ik effort.	an procurement

Is there a distinction between the lab and EC member in the L3 box in terms of their roles and responsibilities? Who is in charge of making decisions?

- "Lab" refers to a JLab staff SME who was identified as a technical resource who could help the CAMs develop and refine their cost/schedule. This SME is usually not otherwise working on MOLLER, and is not paid by the project.
- "EC" (Experiment Contact) is a MOLLER collaborator having in-depth knowledge of the particular L2 subsystem. This person provides the primary technical guidance for the CAM.
- Making Decisions: It is the CAM's responsibility to deliver the scope as defined by the approved CD-2 scope baseline. The CAM makes the decisions based on *input* from the collaboration and any external experts or reviews that he/she (or the PM or other JLab leadership) chooses to consult.

If there were to be a CD-3A what would be included in the request, how much would it cost and when would the orders need to be placed?

- At present, these items in the RLS are logical successors of CD-3A:
 - Downstream and Upstream Toroid Coils (\$1M)
 - PMTs for Main Quartz, ShowerMax, and Scanner detectors (\$400K)
 - GEM Modules (\$800K)
- None of these M&S PROCUREMENTS are actually required to start as early as the scheduled CD-3A (10/1/20).
 - Coil procurement starts in July, 2021
 - PMT procurement starts in May, 2021
- GEM Design/Prototype/Production is planned as a procurement from UVa. This entire chain of activities concludes with installation in Hall-A in Nov., 2024. It is close to (not ON) the Critical Path. We need to identify a way for this to begin as early as October 2020. First activity is "Prototype & Design ...(\$17K)", so perhaps OK prior to CD-3A? (GEM Procurement start is 10/1/21).

Can you summarize the actuals and commit to date for the project?

- Actuals (through December, 2019) : \$368,881
- Commit: \$0

Thank You

Appendix

Appendix slides go here.

BCM resolution

Noise (65 µA)

Parameter

(Critical Design Question #4)

BCM Digita	l Receiver	Bench	Test
-------------------	------------	-------	------

- Double difference = 42 ppm for 480 Hz quartets; ٠ \rightarrow 60 ppm for 960 Hz pairs (white noise)
- Implies resolution of 60 ppm / sqrt(2) = 42 ppm
- With seven of these monitors (planned for MOLLER), average to get 42 ppm / $sqrt(7) \approx 16$ ppm

Two strategies for improvement

New version of Musson electronics has been fielded; bench tests showed factor-of-two improved resolution (for ٠ Qweak conditions). So ~22 ppm resolution for single monitor would be possible. Further improvements could be possible by improving local oscillator (bench tests).

with existing receivers and

~ 16 ppm resolution

~ 1% excess width

 $(91 \rightarrow 92 \text{ ppm})$

7 monitors:

LBNL (Kolomensky and group): All-digital processor prototype developed; eliminates need for local oscillator. Uses ٠ high sampling rate (> ~3 Gsps) and high dynamic range (>10 bits) ADC's that are capable of direct RF sampling. Initial bench studies give \sim 10 ppm resolution for 960 Hz window pairs.

Beam Diagnostics and Monitoring - Pitt

	· · · /
Statistical Width (1016 µs)	~82 ppm
Target Density Fluctuation	30 ppm
Beam Intensity Resolution	10 ppm
Beam Position Noise	7 ppm
Detector Resolution (25%)	21 ppm (3.1%)
Electronics Noise	10 ppm
Measured Width	91 ppm

BCM systematics

(Critical Design Question #3)

Qweak Experience:

RUN 2 Dthr_Crctd BCMDD Physics (ppb) Reasonable agreement between BCMs for short time intervals (runs, slugs), but margir discrepancies emerge with "wien level" comparisons, suggesting systematic bias between monitors or else very unfortunate statistical variation

The precision of the BCMs was marginal for testing this before the end of the run.

MOLLER:

Greater number of functional monitors (7) will help.

Better resolution (either in digital-to-analog or the new all-digital LBNL system) would be a big help, providing a way to consistency during the run.

Unfortunately, PREX did not have a consistent set of more than two monitors continuously over the run. We are still developing the kind of cross-comparison shown above for periods of the run for specific redundant BCMs. To the extent that we have made comparisons so far, we see consistency, with precision about ~10 ppb.

RUN 2 Dthr_Crctd BCMDD Physics

BCM Reproducibility issue from Qweak

In the high-statistics Run 2 of Qweak, the beam current was measured by three independent BCM (beam current monitors): BCM 5,6 and 8.

With three independent monitors, one can determine the individual monitor uncertainty* from the combinations of the widths of the "double difference" distributions, eg. from $DDJ56 = \sigma(AJBCM5 - AJBCM6)$.

* = $\sigma/\sqrt{\#quartets}$ over all of

The three extracted BCM resolution contributions wereen BCM5 = 1.36 ppb BCM6 = 2.46 ppb BCM8 = 1.18 ppb

The consistency between the charge measurements from the 3 monitors can be extracted by normalizing the detector asymmetry by each individual BCM in sequence:

 $A \downarrow 5 = -167.86 \pm 1.36$ ppb $A \downarrow 6 = -159.91 \pm 2.46$ ppb $A \downarrow 8 = -164.26 \pm 1.18$ ppb

If the BCMs were reproducible, these three numbers should agree within statistical errors. The *p*-value based on $\chi 12 / dof = 4.54$ for these three numbers to be consistent is 10.3%, *i.e.* no statistically significant evidence for non-reproducibility of the BCMs.

Homework Question 2 Answer, part 1

son Lab

Homework Question 2 Answer, part 2

Acceptance Function

ee+ep+ine rate at detector plane 26.5 m from target [GHz/uA/(0.5cm)²]

Appendix: Run Periods, Experiment Optimization for Approaching 2% Precision

65 µA, 90% polarization Notional PAC Stat Stat Notional Notional Run 1 kHz Calendar Eff % Commissioning Davs Error **Error** Total Period Width Weeks Weeks Weeks (prod) (ppb) (%) Production 101 14 2.96 11.4 40 11 L 5 6 Ш 96 95 1.08 4.2 50 27 3 30 Ш 91 235 0.65 2.5 60 56 4 60 344 0.55 2.1 13 101 Total

Multiple run periods allow for both statistical width and systematic errors to evolve to ultimate precision.

Run Period 1

- Spectrometer optics, acceptance, alignment ٠
- First look at backgrounds ٠
- Test sufficiency of beam correction tools and analysis
- Beam quality (asymmetry and halo) ٠
- Tests of polarimetry precision

Result: near precision of SLAC-E158 **Run Period 3**

Ultimate precision, ultimate systematic uncertainty Result: $\delta(\sin^2 \vartheta_w) = 0.00024$ (stat), 0.00028 (stat+syst)

Run Period 2

- Statistical behavior of beam asymmetries, • measured asymmetry
- Quality of "slow" reversals (Wien, g-2)
- Precision on background, normalization, ٠ beam corrections, polarization

Result: 2.5x beyond SLAC-E158

$\delta(\sin^2 \vartheta_w) = 0.00044 \text{ (stat), } 0.00047 \text{ (stat+syst)}$

~ 3 – 5 month break needed between Run Period 1 and Run Period 2

Director's Review of MOLLER, January 14-16, 2020

Appendix – Evolution of Statistical Width Budget

Ultimate random noise uncertainty budget

Parameter	Random Noise (65 μ A)
Statistical width (0.5 ms)	\sim 82 ppm
Target Density Fluctuation	30 ppm
Beam Intensity Resolution	10 ppm
Beam Position Noise	7 ppm
Detector Resolution (25%)	21 ppm (3.1%)
Electronics noise	10 ppm
Measured Width (σ_{pair})	91 ppm

Possible evolution of statistical width

Run Period	I	II	Ultimate
Measured Width Goal	101 ppm	96 ppm	91 ppm
Excess noise over statistics	59 ppm	50 ppm	40 ppm
Margin for unknown noise sources	43 ppm	30 ppm	—

Appendix – Evolution of Systematic Uncertainty Budget

Ultimate systematic uncertainty is not achieved on day 1.

As more data is taken and techniques are refined, the systematic uncertainty will improve.

Uncertainty Source	I	Ш	Ultimate
Statistical	11.4	3.9	2.1
Kinematic normalization	3	0.7	0.5
Beam (second moment)	2	0.4	0.4
Beam Polarization	1	0.4	0.4
<i>e+p</i> (+γ) → <i>e+X</i> (+γ)	1	0.4	0.4
Beam (position/angle/energy)	2	0.4	0.4
Beam (intensity)	1	0.3	0.3
<i>e+p (+γ) → e+p (+γ)</i>	2	0.4	0.3
$\gamma^{(^*)} + p \rightarrow (\pi, \mu, K) + X$	1	0.4	0.3
Transverse beam polarization	2	0.2	0.2
e+Al (+γ) → e+Al (+γ)	0.5	0.15	0.15
Neutral backgrounds	0.5	0.1	0.1
Linearity	0.1	0.1	0.1
Total systematic	5.4	1.3	1.1

Path to achieving MOLLER goals

	Source	Adiabatic Damping	Slow Reversals	Feedback	
Intensity	<10 ppm (injector)	-	~10x	100x	
Position/ angle	~20 nm (injector)	~100x (150x max)	~10x (IHWP, g-2, ISM)	~10x, control jitter	
	(Past: 50-200 nm)	Past: 10-30x (95x max)	Past: ~10x IHWP, ISM	Past: ~10x, not often used	
Spot Size	(source) Δσ/σ <10 ⁻⁵	10x over the light		_	
	Past: Δσ/σ <10 ⁻⁴	~TUX synch light	~10x (In wP, g-2, ISM)		

Intensity: run averaged goal <10 ppb

~1% correction accuracy (0.1 ppb systematic)

Position/ angle: run averaged goal < 1.2nm / 0.12 nrad

• Factors here combine to ~ 0.002 nm, 500x better than specification!

Spot size asymmetry: <10⁻⁵

- · Cannot be directly measured on e-beam. Measurements on source laser will provide suitable limit.
- · Slow Reversals provide safety margin
- emittance growth due to synchrotron emission increases the spot size, dilutes the helicity-correlated asymmetry from the source. Additional suppression of ~10x.

