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Abstract

This note discusses the theoretically expected signal variance from various noise
sources in the integrating detector chain. It gives the relevant expressions that will
serve as a basis from which to design detector PMT (photomultiplier) voltage dividers
that are optimized with respect to noise, linearity, and long term stability. Noise
sources are discussed primarily for the detector and the PMT. The properties of the
front-end electronics and the associated noise bandwidth are discussed in a separate
note, dealing only with the front-end electronics design. Both MOLLER and P2 seek to
suppress excess noise to the percent level and I show that excess noise can significantly
increase due to suboptimal detector design (detector resolution) as well as dynode gain
fluctuations, if care is not taken in the design of the voltage divider.

1 Introduction

In this document I consider a source of noise any part of the detector signal that introduces a
variance, even if that variance is a natural part of the operating condition of the equipment.
The fundamental and irreducible (from the point of view of the detector) source of noise is
associated with the variance in the event rate itself, in a given detector. The origin of this
source is not discussed in this document, however. It is meant only to provide a basis, with
respect to which the other sources of noise are compared. All the other sources of noise
are considered excess noise above this fundamental source, which we refer to as counting
statistics and which varies as a function of the number of detected events.

Contrary to counting mode experiments, where one can really talk about counting statis-
tics because one literally counts individual pulses in a detector, in integration mode or current
mode, counting statistics only manifests itself as shot noise at the photomultiplier cathode
(in our case), which contributes to the root-mean-square (RMS) in a continuous signal (no
pulse counting) [1].

Without considering variations in the event rate or the number of photons hitting the
cathode per event (I’ll come back to this below), the variance in the detector signal can then
be quantified, to first order, simply as shot noise at the cathode originating only from the
detector events of interest [1],

σ2
Ik

= 2qIkB . (1.1)

1



Where q = 〈n〉e− is the charge quantum per event, with 〈n〉 being the mean number of
photoelectrons per detector event, Ik = R〈n〉e− being the average cathode current, with and
R being the detector event rate, and B is the integration bandwidth.

Neglecting any PMT related or electronic noise, integration factors, etc., the error in the
measured asymmetry,

A =
I+k − I

−
k

I+k + I−k
, (1.2)

based only on event statistics generated shot noise, would be given by

(δA)2 =

(
∂A

∂I+k

)2

σ2
I
k+

+

(
∂A

∂I−k

)2

σ2
I
k−

=
σ2
Ik

I2k
. (1.3)

Where I used Ik− ' Ik+ ≡ Ik and the assumption has been made that σ2
I
k−

= σ2
I
k+
≡ σ2

Ik
.

From eqn. 1.1, one then finds

(δA)2 =
σ2
Ik

I2k
=

2(〈n〉e−)(R〈n〉e−)B

(R〈n〉e−)2
=

2B

R
. (1.4)

So if no other noise sources are taken into account and one integrates the signal over some
time period (∆t), such that B = 1/2∆t and R = N/∆t, one just gets counting statistics:

δA =
σ
Ik

Ik
=

1√
N

. (1.5)

So far, from the point of view of noise, the total number of photoelectrons generated at
the cathode doesn’t seem to matter, since it cancels out in eqn. 1.4. Of course this isn’t really
true, as I will show below. Aside from actually making a noise contribution, a reasonably
large number of photoelectrons is needed, since the main physics signal is competing with
the background signals, as well as the PMT dark current. So increasing 〈n〉 for the physics
signal, relative to 〈n〉 for the background signals and dark current is of major importance.

Accounting for additional (excess) noise sources modifies eqn. 1.5 to

δA =
σ
Ik

Ik
=

√
1 + α2

√
N

(1.6)

and α2 = α2
DR

+α2
PMT

+α2
E

incorporates noise components stemming from the finite detector
resolution (RD), PMT gain noise (PMT ), and electronics noise (E). The first two terms are
discussed in this document. The electronics noise is primarily thermal/resistive (Johnson
noise α2

E
= 4kBRTB, with Boltzmann constant kB and temperature T in Kelvin) which is

addressed with appropriate electronic design. This is discussed in a separate document on
electronics design. One of the challenges in the detector design is to keep the the excess noise
as small as possible. It turns out that it is easy to inadvertently increase the excess noise
from poor detector resolution or poor PMT design to levels that could increase the running
time by as much as 20% or more.

The detector signal at the PMT output is a result of a series of cascaded processes, each
of which is sampling a separate probability distribution (although they are often of the same
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type, e.g. Poisson), starting with the generation and transmission of photons (e.g. in a
Cherenkov detector), through the photoelectric effect at the cathode, and ending with the
dynode gain cascade. I will briefly review the method of probability generating functions
and cascading probabilities, before moving on to calculate the excess noise factors.

2 Probability Generating Functions and Cascaded Pro-

cesses

This section is a short summary of the relevant information found in references [1, 2, 4, 5].
A cascading process is one in which the output of one process serves as the input to another.
This can be continued indefinitely, until there are no other processes to evaluate. If the
underlying probability distributions are all known, the outcome of the overall process can be
evaluated mathematically by progressive substitution of the distributions and then working
out the analytic expression. However, even if the distributions are all known (which in
general they are not), this can quickly become rather involved, for even a modest number
of cascades. The method of probability generating functions, on the other hand, allows one
to get expressions in terms of variances and means (the quantities we measure), without
knowing (or even needing) the exact underlying distribution, and with relative ease.

2.1 The Probability Generating Function

A suitable generating function for an arbitrary discrete probability distribution p(x) is

Gp(u) = p(0)u0 + p(1)u1 + p(2)u2 + ...+ p(x)ux + ... =
∞∑
n=0

p(n)un . (2.1)

Taking the partial derivative w.r.t. u gives

G
′

p(u) =
∞∑
n=0

np(n)un−1 .

Setting u = 1, then leads to the definition of the sample mean for the distribution p(x)

mp ≡ G
′

p(1) =
∞∑
n=0

np(n) = 〈n〉 . (2.2)

The second derivative gives

G
′′

p(1) =
∞∑
n=0

n(n− 1)p(n) = 〈n(n− 1)〉 . (2.3)

We can combine the results and extract the sample variance as follows:

G
′′

p(1) +G
′

p(1)− (G
′

p(1))2 = 〈n(n− 1)〉+ 〈n〉 − (〈n〉)2 (2.4)

= 〈n2〉 − 〈n〉+ 〈n〉 − (〈n〉)2

= 〈n2〉 − (〈n〉)2 .
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So the variance is related to the partial derivatives of the generating function by

σ2
p ≡ G

′′

p(1) +G
′

p(1)− (G
′

p(1))2 . (2.5)

2.2 Cascaded Processes

If the number of samples taken from a randomly distributed population is itself a random
variable, associated with some probability distribution, then the two probability distributions
form a cascade. This can be extended to any number of successive processes in a chain of
events that are selected according to a set of underlying probability distributions for each
process. The relevant example for the integrating detectors involves a set of N detector
events, each producing pi photons (i = 1..N), each of which produce mj photoelectrons
(j = 1..pi), and continuing on in this fashion for each of the dynodes that are used in the
PMT.

In terms of the generating functions the combined, cascaded process is expressed as [2]

Gabc..z = Ga(Gb(Gc(...(Gz(u))))) . (2.6)

This is a recursion formula, where the processes take place in order, starting with a and
ending with z. Introductions to the use of generating functions can be found, for example,
in [4] and an easily accessible (and nicely explained) proof of eqn. 2.6 can be found at [5]
(theorem 6.3, page 124 - although there it is used in the context of branching processes in
population growth).

Taking the first and second derivatives in eqn. 2.6 and using eqns. 2.3 and 2.5, we can
calculate the corresponding variance, mean, and relative error of the combined process. I
will do this explicitly for the case of detector resolution below, taking into account the the
three processes mentioned above. I then extend this to include dynode processes, by analogy
(sparing myself and the reader the copious manipulations - but this is discussed in much
more detail in [2]).

For three independent consecutive random processes, the total generating function is

Gabc(u) = Ga(Gb(Gc(u))) . (2.7)

Taking the partial derivatives with respect to u gives

G
′

abc(u) = G
′

a(Gb(Gc(u)))G
′

b(Gc(u))G
′

c(u)

and

G
′′

abc(u) = G
′′

a(Gb(Gc(u)))(G
′

b(Gc(u))G
′

c(u))2

+ G
′

a(Gb(Gc(u)))G
′′

b (Gc(u))(G
′

c(u))2

+ G
′

a(Gb(Gc(u)))G
′

b(Gc(u))G
′′

c (u) .

So using Gw(1) = 1, G
′
w(1) = mw (the mean), and G

′′
w(1) = σ2

w + m2
w −mw (the variance),

from eqns. 2.3 and 2.5, we find that

G
′

abc(1) = G
′

a(1)G
′

b(1)G
′

c(1) = mambmc ≡ mabc . (2.8)
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Where ma, mb, and mc are the mean values of the individual processes. From eqn. 2.10, we
also find that

G
′′

abc(1) = G
′′

a(1)(G
′

b(1)G
′

c(1))2 +G
′

a(1)G
′′

b (1)(G
′

c(1))2 +G
′

a(1)G
′

b(1)G
′′

c (1) (2.9)

=
(
σ2
a +m2

a −ma

)
m2

bm
2
c +

ma

(
σ2
b +m2

b −mb

)
m2

c +

mamb

(
σ2
c +m2

c −mc

)
.

Combining eqns. 2.8 and 2.9, we then find for the total variance

σ2
abc = G

′′

abc(1) +G
′

abc(1)− (G
′

abc(1))2 (2.10)

= σ2
am

2
bm

2
c +

σ2
bmam

2
c +

σ2
cmamb .

Finally, using this and the result for the combined mean (eqn. 2.8), we can calculate the
relative variance for the three stage process with arbitrary discrete probability distributions:

σ2
abc

m2
abc

=
σ2
a

m2
a

+
σ2
b

mam2
b

+
σ2
c

mambm2
c

. (2.11)

3 Excess Noise due to Detector Resolution

In applying eqn. 2.11 to the detector resolution, the process labeled above as a, b, c represent
the following:

ma is the mean number of events in the detector in some time interval

mb is the mean number of photons per event

mc is the mean number of photo-electrons per photon

The corresponding variances are, of course, σ2
a, σ2

b , and σ2
c . We can factor out the common

factor ma in the RHS denominator of eqn. 2.11 and combine the last two terms, to get

σ2
abc

m2
abc

=
1

ma

(
σ2
a

ma

+
m2

cσ
2
b +mbσ

2
c

m2
cm

2
b

)
. (3.1)

The mean values for mb and mc are not usually measured separately. Instead, one usually
measures the combination 〈npe〉 = mbmc, which is the mean number of photoelectrons per
detector event, and the corresponding variance σ2

npe = m2
cσ

2
b + mbσ

2
c . Likewise, the PMT

cathode current has mean Ik = mambmc, and variance σ2
abc = σ2

k. With all of that, we obtain

σ2
Ik

I2k
=

1

ma

(
σ2
a

ma

+
σ2
npe

〈npe〉2

)
. (3.2)
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Integration of the signal over a time period ∆t (which is equivalent to multiplying by the
bandwidth set by the integration period), we get N = ma∆t so that

σIk
Ik

=
1√
N

√(
σ2
a

ma

+
σ2
npe

〈npe〉2

)
. (3.3)

Up to now, no assumptions have been made about the underlying probability distribu-
tions, so this is a general result. The first term under the square-root depends primarily on
beam and target properties and the corresponding sample distribution would generally not
be simple or well defined. However, if the sample period is short in comparison to target
variations, beam drifts, and other non-random variations, the variance in the average event
rate may follow a Poisson distribution, so that σ2

a = N/∆t and

σIk
Ik

=
1√
N

√(
1 +

σ2
npe

〈npe〉2

)
. (3.4)

The excess noise component due to finite detector resolution is σ2
npe/〈npe〉2. It can be mini-

mized by carefully optimizing the physical design of the detector active components (quartz
and light guides) and by choosing a high quantum efficiency PMT at the right wavelength.
Generally speaking, larger number of photoelectron count is better. Ideally, the distribu-
tion in the number of photoelectrons would be Poissonian, such that σ2

npe/〈npe〉2 ' 1/〈npe〉,
but this is not usually the case, since this component also depends on shower activity in
the detector and light transmission/reflection processes. We therefore measure the detector
resolution and optimize the prototype geometry to reduce the level of excess noise to an
acceptable level.

4 Excess Noise due to PMT Gain

The PMT gain is facilitated by successive emission of additional electrons at each of the
dynodes (those that are used), for each incident electron. Since the number of electrons that
hit a given dynode is itself a random variable, each dynode process again just forms another
step in the overall cascade. So one can expand the calculation in sec. 2.2 to include the
noise contribution from the dynode stages. To illustrate how this influences the excess noise
component, we can start with one dynode stage.

If we include one more cascade, eqn. 2.7 just changes to

Gabcd(u) = Ga(Gb(Gc(Gd(u)))) . (4.1)

Then, calculating the first and second derivatives and combining results gives:

σ2
abcd

m2
abcd

=
σ2
a

m2
a

+
σ2
b

mam2
b

+
σ2
c

mambm2
c

+
σ2
d

mambmcm2
d

. (4.2)

The new factor md ≡ δd1 is now the gain at the first dynode, producing a mean dynode
current of Id1 = mambmcmd = (N/∆t)〈npe〉δd1. So, with the same quantities defined before,
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one can rewrite eqn. 4.2 as

σ
d1

Id1
=

1√
N

√√√√(1 +
σ2
npe

〈npe〉2
+

σ2
δd1

〈npe〉δ2d1

)
. (4.3)

The creation of secondary electrons at the dynodes follows a Poisson distribution so that
σ2
δd1

= δd1 and

σ
d1

Id1
=

1√
N

√(
1 +

σ2
npe

〈npe〉2
+

1

〈npe〉δd1

)
. (4.4)

At this point a clear pattern emerges and the effect of the next dynode can be inferred:

σ2
abcde

m2
abcde

=
σ2
a

m2
a

+
σ2
b

mam2
b

+
σ2
c

mambm2
c

+
σ2
d

mambmcm2
d

+
σ2
e

mambmcmdm2
e

. (4.5)

Where me ≡ δd2 is the gain at the second dynode and σ2
e = δd2 is the corresponding variance.

σ
d2

Id2
=

1√
N

√(
1 +

σ2
npe

〈npe〉2
+

1

〈npe〉δd1

(
1 +

1

δd2

))
. (4.6)

The next stage after that would be:

σ
d3

Id3
=

1√
N

√(
1 +

σ2
npe

〈npe〉2
+

1

〈npe〉δd1

(
1 +

1

δd2

(
1 +

1

δd3

)))
. (4.7)

For a PMT with n gain stages, we would then have the following anode output:

σa
Ia

=
1√
N

√(
1 +

σ2
npe

〈npe〉2
+

1

〈npe〉δd1

(
1 +

1

δd2
+

1

δd2δd3
+ · · ·+ 1

δd2δd3 · · · δdn

))
. (4.8)

If n is sufficiently large and all gains beyond the first dynode are the same (δ), then eqn 4.8
is approximately equal to

σa
Ia
' 1√

N

√(
1 +

σ2
npe

〈npe〉2
+

1

〈npe〉δd1

(
δ

δ − 1

))
. (4.9)

This approximation is reasonably good for high gain PMTs, where most dynodes of the PMT
are used. However, as discussed in the next section, for the MOLLER/P2 integration mode
measurements, we need to keep the gain relatively low and will need to be restricted to only
use the first couple of dynodes, to reduce the gain noise and maintain reasonable linearity.
In that case, the explicit expression given by eqn. 4.8, is more appropriate.
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5 Minimizing PMT Gain Noise under Stability and

Linearity Constraint

For P2 and MOLLER, the high rate, integrating detectors produce cathode currents between
10 and 25 nA, depending on the actual rate and the number of photoelectrons per event. The
cathode and anode current limits are specified by the PMT manufacturer and the maximum
anode current sets the maximum gain that can be applied, given a certain cathode current.
The PMT that is currently under evaluation for both MOLLER and P2 is the 9305QKB
PMT by ET Enterprises. It has a maximum anode current of 100 µA and one usually wants
to stay well below that, to ensure longevity and relative long term gain stability of the PMT.
The manufacturer of the 9305QKB does not specify a maximum number of Coulombs that
can be drawn from the anode, but other sources [7] give a definition of PMT end-of-life when
the anode sensitivity has dropped by a factor 2, which typically happens somewhere between
300 and 1000 Coulombs [7].

Figure 1: Plot of anode current stability un-
der continuous illumination and constant bias
voltage, taken over one year. The higher the
anode current, the more pronounced is the
gain drop over time. The figure was taken
from [6].

Figure 1 shows the long term gain stability, measured by ET Enterprises (not necessarily
with the 9305QKB PMT) for a few different anode currents [6]. The figure shows that, for
a starting gain that produces a continuous anode current of 10 µA at the beginning, the
PMT will be at its nominal end-of-life state after a little less than a year of running. This
is roughly consistent with 300 Coulombs of charge drawn over the year. MOLLER will run
for 344 full days (or 8256 hours) and P2 will run for 10000 hours or about 416 full days.
In current mode, the reduced gain can be countered by increasing the overall bias voltage
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over time, but as I will show below, we want to start off with a relatively high bias voltage
and low number of stages to begin with and the PMT maximum voltage ratings limit the
possibility for increasing the bias voltage later on. For these reasons it is prudent to keep
the anode current at or below 10 µA, which means that the total PMT gain should be no
more than around 1000, depending on the exact detector rate and photoelectron efficiency.
Meanwhile, eqn. 4.8 shows that large dynode gain and a high photoelectron efficiency reduce
excess noise. The list below summarizes the various, partially competing constraints.

1. Optimize the detector resolution, which implies maximizing npe, as long as this is not
achieved while introducing shower noise or other non-Poissonian (non-cathode related)
noise sources.

2. Maximize the inter-dynode gain (δ) for, at least, the first and second stages.

3. Maintain a gain that is low enough to keep the anode current at or below 10 µA.

4. Maintain reasonably linear operating conditions, which means keeping the inter-dynode
and dynode to anode voltage reasonably high.

The MOLLER/P2 candidate PMT has high gain SbCs dynodes for which the gain at the
nth dynode satisfies the following relation [2, 3]

δdn = 0.172 (Vdn−1,dn)0.72 . (5.1)

Where Vn−1,n is the voltage drop between the nth dynode and the one before. So choosing
a large inter-dynode voltage increases the dynode gain, which decreases the noise. As seen
in eqn. 4.8, having a large gain at the first dynode is critical, to reduce the noise. We also
know that a low cathode to first dynode voltage (and a low or unstable voltage between the
last dynode and the anode) leads to increased non-linear PMT behavior. At the same time,
however, we are limited in how high we can make it and still keep the overall gain low enough.
So for integration mode running, we want to use relatively few dynodes with relatively high
gain. For the candidate 9305QKB PMT, the maximum cathode to first dynode voltage is
Vk,d1 = 450 V and the maximum inter-dynode voltage is Vdn−1,dn = 300 V. If all of the
inter-dynode voltages are the same (Vd,d), then the total gain for an n stage voltage divider
is [2]

G = aV b
k,d1

(
aV b

d,d

)(n−1)
. (5.2)

Where a = 0.172 and b = 0.72, for the SbCs dynode. We can write the total bias voltage
as V

PMT
= mv + nv (an n-stage PMT has n + 1 voltage divisions), where Vk,d1 = mv and

Vd,d = v. With that

G = a

(
mV

m+ n

)b
(
a

(
V
PMT

m+ n

)b
)(n−1)

= anmb

(
V
PMT

m+ n

)nb

. (5.3)

Calculating ∂G/∂m = 0, one finds that G is maximized when m = n/(n − 1), for a fixed
bias voltage V

PMT
.

9



5.1 Example: 3 Stage PMT Base

As an example, consider a voltage divider with three gain stages (3 dynodes and 4 voltage
drops). We then maximize the gain if m = 3/2, which gives the optimal combination for
G = δd1δd2δd3. If we want an overall gain of 1000, then, from eqn. 5.3, the PMT bias voltage
is

1000 = (0.172)3
(

3

2

)0.72(
2V

PMT

9

)3×0.72

⇒ V
PMT
' 1110 V .

Figure 2 shows the corresponding gain curve, as a function relative cathode to first dynode
voltage Vk,d1/Vd,d.

Figure 2: Gain dependence on the fractional relation-
ship between Vk,d1 and Vd,d, for a 3 stage voltage divider,
for a bias voltage of ' 1110 V.

So with this we find v = 2V
PMT

/9 = Vd,d = 247 V and Vk,d1 = mv = 370 V. Substituting
these into eqn. 5.1 then gives

δd1 = 0.172(370)0.72 ' 12

δd = 0.172(247)0.72 ' 9 .

Where δd1 is the gain from the first dynode and δd is the gain from from all other dynodes.
The total gain is about G = 12× 9× 9 = 972.

WE can now go back and use eqn. 4.8, to calculate the theoretically expected noise
contribution from such a PMT base. The PMT noise contribution is given by

α2 =
1

〈npe〉δd1

(
1 +

1

δd2
+

1

δd2δd3

)
. (5.4)

From measurement, the MOLLER ring 5 detectors get about 30 photoelectrons, so for those
detectors

α2
PMT =

1

30× 12

(
1 +

1

9
+

1

9× 9

)
' 0.003 . (5.5)

10



For P2 the detectors get about 50 photoelectrons [8], which gives

α2
PMT =

1

50× 12

(
1 +

1

9
+

1

9× 9

)
' 0.002 . (5.6)

In both cases, this is much less than the desired contribution from detector resolution alone.

By contrast, suppose one were to use a 7 stage base at a gain of 1000. By eqns. 5.3
and 5.1 one finds δd = 2.64 and δd1 = 2.95. With these, the noise factor for this PMT
base design would be α2

PMT ' 0.018 for MOLLER and α2
PMT ' 0.011 for P2. These values

are much closer to the desired total excess noise values for both experiments. This is aside
from the fact that the inter-dynode voltages are very low for such a design (Vd,d ' 44 V),
while Vk,d1 ' 51 V. These are much too low and would likely produce a highly non-linear
performance.

6 Summary

The careful evaluation of all sources of random noise in the detector signal chain shows
that the design of the physical detector components (quartz and light guide) plays a crucial
role in the reduction of excess noise. In addition, the number of photoelectrons forms an
important factor in suppressing the excess noise contribution from dynode gain fluctuations.
The gain must be kept low, distributed across a small number of dynodes, to minimize the
noise, ensure longevity, and maintain good linearity.
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