P2

Detector Development

- Fused silica radiation hardness tests -

Kathrin Imai

December 2019

P2 Overview

P2 Detector radiation exposure

Possible radiation damage

(M. Hoek)

Lichtenberg figures in insulating material

Radiation induced damage of optical transmission in Cherenkov radiator

Beam spot: - rastered over 1 cm x 1 cm areas - visible on fluorescent screen

Monitor picture in MaMi control room: Beam spot on fluorescent screen in front of quartz samples

Sample dimensions

P2 doses

10

5

1

1/2

No visible damage or transmission losses...

- Calculated: Cherenkov production spectrum for electrons with β =1 for
 - Spectrosil 2000
 - Material with constant n=1.46
- Simulated: Cherenkov light spectrum at location of PMT cathode for quartz bar with undamaged transmission spectrum

Transmission measurements of samples in spectrophotometer

Transmission measurements of samples in spectrophotometer

Absorption bands as predicted by existing defect models

10

Kathrin Imai P2 – Detector Development

Transmission loss of samples in spectrophotometer

Transmission loss relative to original transmission spectrum:

$$L(\lambda) = \frac{T_{\textit{before}} - T_{\textit{after}}}{T_{\textit{before}}}$$

Kathrin Imai P2 – Detector Development

Transmission measurements of samples in spectrophotometer (Zoom of previous plot)

~5% signal Cherenkov light loss per 1 cm between 200nm and 240nm

~5% signal Cherenkov light loss per 1 cm between 200nm and 400nm

Quartz active area: 45 cm \rightarrow average distance traveled by photon > 22.5cm $0.95^{^{22.5}} \approx 0.3$

70% signal loss

Cherenkov spectrum at PMT cathode from Simulation

Position scan: Comparison radiation damaged quartzes vs new quartzes

Attempt to "heal" the quartz samples:

26h in an ancient artificial sun

Kathrin Imai

2 – Detector Developmen

CONCLUSION

- Severe radiation damage expected
- Signal decrease and change in Q²-weighting due to transmission loss in UV region
- Need to find practical solution in order to not lose signal over experiment time

A4 calorimeter during Cherenkov medium "healing" phase

• "Healing" with UV light seems promissing

THANK YOU VERY MUCH

If I refered to anything, it can be found here:

M. Antonini , P. Camagni , P. N. Gibson & A. Manara (1982) Comparison of heavy-ion, proton and electron irradiation effects in vitreous silica, Radiation Effects, 65:1-4, 41-48,

C. M. Nelson, J. H. Crawford (1959) Optical Absorption in Irradiated Quartz and Fused Silica, Pergamon Press 1960. vol. 13. pp. 296-305

Hoek, M. (2008). Radiation hardness study on fused silica. Nuclear Instruments and Methods in Physics Research Section A Accelerators Spectrometers Detectors and Associated Equipment. 10.1016/j.nima.2008.07.098.

